pain management

What do occupational therapists add to pain management?


I’ve struggled with professional identity from time to time, but after completing my PhD thesis looking at how people live well with pain, I’ve developed a new understanding of how occupational therapists add value in this area of practice.

Occupational therapists joke that “no-one knows what an occupational therapist does” – and sadly, that’s true. It’s not because what we do isn’t important, it’s because our view of people and the way we work with people differs from most health professions. Occupational therapists don’t treat disease per se, we work with people’s function and participation, with a person’s illness experience. We don’t fit inside a biomedical, disease-oriented model of humans.

This means an occupational therapist works with people using a process-oriented approach. This approach begins by understanding what a person values, what matters in their life, and how the person’s life context influences their participation. Occupational therapists are concerned with the daily minutiae of life: the way you clean your teeth, how you get to work, what you do for fun, the roles you undertake, the daily routine you follow, the things that make your life your own – not a facsimile of someone else’s.

In pain management/rehabilitation, occupational therapists are there to help people resume, or begin, a life that looks like their own. To integrate strategies into daily routines and habits. To contextualise the strategies other professionals introduce. We’re the professional who talks about the timing of exercise/movement practice – how to fit exercises into each day without compromising other important routines. The details of when and where and how exercises are done in the long term, for life, in life. We encourage people to look beyond the simple 3 x 10 and into the kinds of movement opportunities that hold meaning beyond the “it will help your pain”.

Occupational therapists translate what happens in clinic settings into the real, messy, chaotic and unpredictable worlds of the people we serve. When someone is learning to develop self compassion, occupational therapists work out what this might look like in the context of being a good father, or an efficient employee. When someone is developing effective communication skills, occupational therapists are there to review when, where and how these skills are brought into play with the kids, the uncle, the neighbour, the colleague. When someone needs to learn to down-regulate a sensitive nervous system, occupational therapists are there to help assess each setting, noticing the sensory load of a situation, problem-solving ways to remain engaged in what’s important without withdrawing or overloading.

When someone’s afraid of a movement, occupational therapists go into the real world to help that person begin to do that activity – our skills are there to titrate the level of difficulty not just around biomechanical demands, but also social, interpersonal, sensory, and cognitive loads. Ever wondered why a person can manage something really well in the clinic – but can’t do the groceries, go to a restaurant, stay with friends overnight, anywhere where the demands are different? Occupational therapists can help figure out why.

For those that don’t know, my profession has been established since the days of 1793, when Phillipe Pinel began what was then called “moral treatment and occupation”, as an approach to treating people with mental illness. In the US, a National Society for the Promotion of Occupational Therapy (NSPOT) was founded in 1917, and continued through the 1920’s and 1930’s until the Great Depression. Occupational therapy became more closely aligned with medicine as part of a rehabilitation approach to recovery with wounded soldiers, those with TB (in New Zealand especially), and those with chronic diseases. In fact, occupational therapy was a registered and protected health profession in NZ since 1945 (before psychology).

It was during the 1980’s and 1990’s that the profession began questioning the medical model – and during my training in the early 1980’s, Engel’s biopsychosocial model was promoted as an over-arching approach to viewing people. So for occupational therapists, this is our practice philosophy: to look at the whole person in context.

Occupational therapists are fully trained across both physical and mental health. Our profession is one of the very few that has retained this “whole person” model of health from its inception. The value of doing, being and becoming is at the centre of practice. The appreciation that people live in a physical and social context, and that people have biopsychosocial, cultural and spiritual aspects is central to practice.

Pain is a human experience that spans the biological, the psychological, the social, the spiritual. Pain can influence all of life. When life has lost meaning because it doesn’t look like the life a person had before pain – this is where occupational therapists practice the art and science of our work.

The hardly hidden costs


Chronic/persistent pain management is not sexy. No-one gets a magic cure. Lives are not saved – at least not in a way that mortality statistics show. Chronic pain management is under-funded.

And now: buried in a list of other proposed service cuts in the local health board’s plan to save millions of dollars, is a proposal to “save” $650,000 from the pain clinic. You’ll note also reductions in community services, GP support for vulnerable, and healthy lifestyles programmes.

https://www.stuff.co.nz/national/health/122558278/hundreds-of-staff-nurses-and-services-may-be-axed-at-canterbury-dhb

I know that nursing staff, senior medical staff and 200 admin staff are also in the firing line. I also know that this health board has been side-swiped by earthquake earthquake re-building, the terror attacks with so many victims needing urgent and ongoing surgery and rehabilitation, along with the mental health impacts of all of these events and now Covid-19… Delays and poor workmanship on new buildings on the main hospital site have meant these new facilities are well over-budget, and two years late – and there is still no car-parking for patients and staff. Historic under-funding by past governments has meant Canterbury DHB has developed innovative and nimble responses to these challenges – and been lauded internationally for their work. I won’t say anything about the growth in middle management, suffice to say that where there was once one general manager at one site, and a direct report line from the clinical director of a service – now there are three or four layers of management…

Let me turn to why cutting expenditure on pain services is likely to cost rather than save.

In 1987 or so, a new pain management service was developed in Christchurch. One of the primary reasons for opening this centre was to address the burgeoning rise in numbers of people presenting for orthopaedic surgery but for whom surgery was not an option. Either because there was nothing to find on imaging – pain can’t be imaged, and surgeons can’t operate on a normal x-ray or MRI – or because the person’s problem would likely not respond to surgery.

As a result of the new pain management service, people who weren’t suitable for orthopaedic surgery were referred for multidisciplinary pain management: medical assessment, functional assessment, psychosocial assessment, and appropriate pain management from there. Fewer people with low back pain were being admitted to the orthopaedic wards as a result. Win!

It’s only possible in the first few years of a service to clearly demonstrate the impact of it on the rest of the health system. Why? Because it’s not possible to show what isn’t happening. Now that pain management services have been in place for many years, the effect of people attending these services rather than other parts of the healthcare system is invisible.

For example, people who attend pain management services don’t need as many ambulance trips, visits to the Emergency Department, admissions via Emergency to hospital wards. They don’t stay in hospital beds while they undergo investigations – all the while using bed space, “hotel services” (food, linen, soap, towels, hot water, cleaning services), along with the skilled healthcare staff – doctors, nurses, physiotherapists, occupational therapists, laboratory workers, phlebotomists, radiographers, pharmacists and on and on…

People who are served well through pain services don’t take up as much space in the rest of the system – and the very people who need pain services are the people who otherwise do end up in many places throughout the healthcare system (Blyth, March, Brnabic, Cousins, 2004; Duenas, Ojeda, Salazar, Mico & Failde, 2016). It’s evident from so many epidemiological studies that people with chronic pain will have an impact across “physical” health services, “mental” health services, primary care (General practice), secondary care and tertiary care. And an acute hospital setting is not the right place for people with chronic pain to be treated.

Until recently, though, admissions for chronic pain haven’t been counted as “chronic pain” because the coding used (ICD10) doesn’t have chronic pain as a stand-alone category. This means a person with chronic abdominal pain, for example, will have their condition listed within an acute pain admission category. Similarly with chronic non-cardiac chest pain – these admissions are coded as “cardiac”. The new ICD11 will help make these currently hidden admissions visible – but currently, it’s not possible to identify just how many people are being seen in these departments but who could be better managed in a persistent pain clinic.

Now I’m the first to admit that our treatments for chronic pain don’t show massive effects. Pain intensity, disability, distress all continue to have an impact on people even after attending a pain service. BUT that is the nature of a persistent pain problem – people don’t die from it, but like those with “long-Covid19”, they continue to need help. And yet, by comparison with the costs of not providing these services, pain clinics save a health system money – and this has been known since the 2000’s (Gatchel, McGeary, McGeary & Lippe, 2014; Loisel, Lemaire, Poitras, Durand, Champagne, Stock .et al, 2002).

The saddest thing about the proposal to cut funding is that by losing skilled and experienced – and passionate – clinicians, we all lose. Community pain services in New Zealand are largely staffed by clinicians who have little/no additional training in persistent pain. It’s well-documented that physiotherapists find it hard to identify and work with psychosocial factors – the main predictors for long-term distress and disability. Psychology programmes in New Zealand have little/no pain content. There are too few pain specialists. And most of the community pain services pay lip service to interprofessional teamwork because they’re not co-located, haven’t developed effective team structures because these are considered a “cost” to service delivery by private owners, and use contractors who are not paid to attend meetings.

New Zealand’s population is aging. Along with aging is an increase in painful conditions such as osteoarthritis and diabetic neuropathy (we have such high rates of diabetes). We have no national pain strategy. Our clinical workforce is under-skilled and many clinicians find pain management work is hard and demoralising. I can see why clinicians feel demoralised when what should be seen as essential services are in the sights of cost-cutting administrators.

Blyth, F. M., March, L. M., Brnabic, A. J., & Cousins, M. J. (2004). Chronic pain and frequent use of health care. Pain, 111(1-2), 51-58.

Dueñas, M., Ojeda, B., Salazar, A., Mico, J. A., & Failde, I. (2016). A review of chronic pain impact on patients, their social environment and the health care system. Journal of pain research, 9, 457.

Gatchel, R. J., McGeary, D. D., McGeary, C. A., & Lippe, B. (2014). Interdisciplinary chronic pain management: past, present, and future. American Psychologist, 69(2), 119.

Loisel, P., Lemaire, J., Poitras, S., Durand, M. J., Champagne, F., Stock, S., … & Tremblay, C. (2002). Cost-benefit and cost-effectiveness analysis of a disability prevention model for back pain management: a six year follow up study. Occupational and Environmental Medicine, 59(12), 807-815.

Pacing, pacing, pacing…


If there’s one pain management and rehabilitation strategy that keeps me awake at night, it’s pacing. Living with persistent pain, I loathe the idea of pacing because I know everyone “booms and busts” from time to time, and few people like the idea of planning every single aspect of every single day as they come to grips with modifying their daily routines. BUT it’s one of the most popular strategies in textbooks, self-help books, and in treatment so there must be something in it, right?

Vexed definitions

One of the problems with the whole pacing concept is defining what we mean by it. I like Nicole Andrew’s approach: Nicole acknowledges that defining pacing is difficult, so when she talks about her research into pacing, she’s clear about the definition she’s using in that piece of work.

Various definitions abound. As a broad concept, pacing refers to organising daily activities in such a way that a specific end is achieved. The difficulty arises when we begin to determine the end goal of pacing (pain reduction? maintaining consistent activity levels? completing important tasks? avoiding a flare-up? reducing the relationship between pain fluctuations and activity? increasing overall activity levels over time?) and the means used to achieve these ends (time as a guide? activity intensity as a guide? importance and values as a guide? “spoons” of energy as a guide?). You can see how complex this concept is…

Nielson, Jensen, Karsdorp & Vlaeyen (2013) discussed this and identified two treatment goals (they weren’t considering the spontaneous use of pacing, nor the use of pacing outside a treatment context). “Whereas the operant approach seeks to improve function (decrease disability), the energy conservation approach is designed to reduce symptoms (pain, fatigue).”

Fordyce developed the operant conditioning approach, viewing pain behaviours as reinforced by other people – or by avoiding negative consequences such as a pain flare-up. His approach involved establishing a quota – a certain number, or a certain time in which people maintain activity irrespective of pain flucuations. In a clinical setting, this is the approach I mainly use, though there is an art to setting the “minimum” a person does (setting a baseline) and to nudging the activity levels up.

Sternbach, another influential pain management person from around the late 1970’s, followed a similar approach – but instead of simply establishing a baseline, he advised people to anticipate the point at which they would increase their pain and to stop the activity just before then. This is also a popular approach in pain management rehabilitation today – but has the unfortunate effect of reinforcing a pain avoidance (and pain contingent) approach, if not done very carefully.

Occupational therapists have frequently advocated the “5 p’s”. Pacing, positioning, posture, persistence and problem-solving. This approach was based on energy conservation, and while I can’t find the original papers from which this approach was developed, it was introduced to me as part of rheumatology practice, and in conditions where fatigue is a problem such as multiple sclerosis. I can see it being used today as part of the popular “spoons” meme where people are thought to have a fixed number of “spoons” of energy, and need to allocate their energy accordingly. My main criticism of this approach is that it doesn’t allow for people to increase their capabilities over time, either through “training” effects, or habituation.

Now, how about some evidence for any of these approaches?

Well therein lies a problem – there is very little research to support activity pacing despite its popularity. This is why I was so interested when I spotted a pilot study published in Journal of Pain, testing the energy conservation approach to activity managing (aka pacing) against an operant conditioning approach in a group of people with fibromyalgia. This group of people provides us with a useful population to test both approaches because fatigue is thought to be a prominent feature of fibromyalgia, and energy conservation has some degree of face validity for managing fatigue.

The design of the study involved four groups, two immediately treated using either an operant conditioning variant of pacing, or the energy conservation variant, and two groups with delayed treatments, again with the two versions (these groups acted as the control groups for this study). 178 participants were involved, with confirmed diagnoses of fibromyalgia given by occupational therapists using the American College of Rheumatology’s 2010 FMS diagnostic criteria. If the occupational therapist had doubts about the individual’s diagnosis, or the person wasn’t able to provide formal documentation confirming the diagnosis, the study rheumatologist assessed the potential participant for inclusion. This is an important procedure in studies of people living with fibromyalgia, given there is no definitive diagnostic test such as a blood test or imaging result.

The two treatment approaches were documented in treatment manuals to establish consistency, and it’s interesting to note that the approaches were applied across all activities in a day rather than just exercise, as often happens. For full descriptions of each of the ten treatment sessions, the article should be referred to, and the treatment manuals are available at http://research.melanieracine.com/activity management

Cutting to the chase, what did they find?

Well… to quote the authors “Inconsistent with the study’s primary hypothesis, neither treatment was effective in reducing average pain or usual fatigue symptoms. However, analyses of secondary outcome measures suggest the possibility that OL-based activity pacing treatments might be more effective than EC-based treatments in improving patient function.”

I didn’t expect pain reduction, or fatigue to be altered by an activity management approach: the relationship between movement and pain is highly variable, and there are many times we’ll be happy doing something and not experience pain simply because it’s something we enjoy. At the same time, I did hope to see a difference between the two approaches in terms of overall “doing” (function). My expectation was that pain may actually increase as people begin doing more, or alternatively, that people will feel more confident that they can achieve what’s important to them in a day, and that pain intensity becomes less of a guiding factor. The authors provide some explanations: perhaps the study numbers were too low to detect a difference (ie the study was under-powered); and perhaps a brief intervention isn’t intensive enough to help change over so many different aspects of a person’s life. Or perhaps, I want to add, neither approach is terribly great and while they both have intuitive appeal, persistent pain is too complex for any single activity management approach to make much of a difference. Maybe it’s something that needs other strategies to be incorporated such as exercise, mindfulness, medications, and even scheduling pleasant events.

So where does this leave us?

I guess for me, I like to think of activity pacing as one of many different tools in my toolbox. I bring it out when I’m attempting to increase my overall activity level – such as my walking programme, where I’m slowly but gradually increasing my capabilities without giving myself a whole two weeks of DOMs! I otherwise use a more flexible activity management approach: if something is important to me, and I think I can deal with the flare-up, I’ll do it. If it’s not as important to me, or I don’t think I can deal with the flare-up, I’ll probably modify my approach. Pacing, or activity management is only one tool…

Andrews, N. E., Strong, J., & Meredith, P. J. (2012). Activity Pacing, Avoidance, Endurance, and Associations With Patient Functioning in Chronic Pain: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation, 93(11), 2109-2121.e2107.

Nielson, W. R., Jensen, M. P., Karsdorp, P. A., & Vlaeyen, J. W. S. (2013). Activity Pacing in Chronic Pain: Concepts, Evidence, and Future Directions. Clinical Journal of Pain, 29(5), 461-468.

Racine, M., Jensen, M. P., Harth, M., Morley-Forster, P., & Nielson, W. R. (2019). Operant Learning Versus Energy Conservation Activity Pacing Treatments in a Sample of Patients With Fibromyalgia Syndrome: A Pilot Randomized Controlled Trial. Journal of Pain, 20(4), 420–439. https://doi.org/10.1016/j.jpain.2018.09.013

Pain science is not a thing


Today’s post is occasioned by reading several discussions on various forums where the term “pain science” and various adjectives to describe this kind of practice. For those who don’t want to read the rest of my ramblings: no, it’s not a thing, science is an approach to understanding phenomena, and I would have thought all health professionals would use a science-based approach to treatment.

I went on to Google, as you do, to find out when this term began its rise in popularity. Google wasn’t particularly helpful but did show that it’s been around since 2004 at least, and seems to have been centred around the US, UK and Australia in roughly May 2004. I can’t grab data from earlier than this, sadly, but I think it’s interesting to take a look at the popularity peaks and troughs…

So, what does “pain science” mean to commentators? I haven’t delved in too deeply to the social media use of the term, but given I’m a social animal and have written my blog since 2007 (which is mainly on “pain science”) I’ve encountered it many times. It seems to be related to using a neurobiological explanation for pain as an experience (referring to the phenomenon and the underlying biological processes involved) rather than focusing purely on biomechanics or tissue damage/nociception as the key force. And it does seem to tie in with the emergence of “Explain pain” as one way of helping people reconceptualise their experience as something they can influence rather than something other people need to “fix”.

Commentators who aren’t in love with the “explain pain” thing have said things like “the pain science camp” or as one person put it “There’s your manual PTs, your pain science PTs, and your just load it PTs etc”

I went on to Twitter and the hashtag #painscience was paired with #BPSModel and #PT and #physicaltherapy (or variations), #chronicpain #exercise #lowbackpain – and so on.

So what do I think pain science means if it’s not a neurobiological approach to pain management? Well – pain science is a lot like cardio-respiratory science, and neurological science, and psychological science – it’s about applying a scientific approach to understanding pain. Science has been defined as “the intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment.” In this instance, Google is your friend. So science is about systematically studying phenomena through observation and experimenting. If we apply this to pain – it’s the systematic study of structure and behaviour of the phenomenon we call ‘pain’ through observation and experiment. For what it’s worth, scientific study of pain has been going on since… oh at least Descartes, but probably much earlier given that pain is a ubiquitous and essential part of human experience.

To me, understanding pain involves multiple disciplines: yes to biology, and especially neurobiology because the experience (as we understand it now) involves neurobiological processing. But it’s also about psychology
the scientific study of the human mind and its functions, especially those affecting behaviour in a given context; sociology – the study of the development, structure, and functioning of human society; the humanities – the study of how people process and document the human experience; politics – the activities associated with the governance of a country or area, especially the debate between parties having power; and Anthropology –  the study of humans and human behavior and societies in the past and present. Social anthropology and cultural anthropology study the norms and values of societies. Linguistic anthropology studies how language affects social life.

So to describe an entire approach to understanding a phenomenon as if it’s a “movement” or “camp” or “dogma” or even “tribe” suggests serious  misunderstanding of both science and of an intervention.

What is “explain pain” then, or pain neurobiology education? – it’s an explanation of some of the biological elements of our nociceptive system as they combine to produce the experience we know as pain. For some people it’s the first time anyone took the trouble to explain why the pain of a papercut feels so bad compared with, for example, the pain of a sprained ankle; and why they still experience pain despite having no “damage” as visible on imaging. It’s an attempt to give people a frame of reference from which to understand their own journey towards recovering from a painful injury/disease/problem. In itself it’s not new: explanations for pain have been used in pain management programmes since the 1970’s (and earlier, if we consider that Fordyce used explanations in his behavioural approaches to pain management), and have routinely drawn on current pain research to help provide explanations that make sense to both the person and the clinician. The distinction between earlier explanations which drew heavily on the gate control theory, and this latest iteration is that the explanations are more complex, pain is considered to be an “output” that emerges from multiple interactions between brain and body, and that’s about it. Oh and it’s been picked up and enthusiastically used by physiotherapists (and other primarily body therapists) around the world.

What’s the evidence for this approach? Well, IMHO it’s not intended to be a stand-alone “treatment” for most people experiencing pain. I see giving an explanation as integral to usual practice, just as we do when we explain why it’s not a good idea to go running on a newly sprained ankle or why we’re suggesting a mindfulness to someone with a panic disorder. So far there have been a lot of studies examining variants of “explaining pain” alone or in combination with a number of other treatments including exercise. A recent systematic review and meta-analsyis of “pain neuroscience education” for chronic low back pain found eight papers (with 615 participants) showing that in the short-term, this kind of education reduces disability (by 2.28 points on the Roland-Morris Disability Questionnaire which is a 24 point scale) in the short-term and a slightly lesser effect in the long-term  (2.18). There were greater effects when this was combined with physiotherapy, though we often don’t know exactly what is included in “physiotherapy”.  There was some evidence that this kind of education helps reduce pain scores (by 1.32) but only in combination with other physiotherapy interventions. The authors pointed out that the strength of evidence for education on pain in the short term was low to moderate, but that it doesn’t have much of an impact on pain-related fear and avoidance, or on pain catastrophising (Wood & Hendrick, in press).

To compare this with another active treatment, exposure therapy for fear of movement/reinjury in chronic low back pain, de Jong, Vlaeyen, Onghena, Goossens, Geilen & Mulder (2005) performed a careful study of six individuals, using a single case experimental design. (If you’re not familiar with this approach to research – it’s extremely rigorous and useful in a clinical setting, this link takes you to a chapter discussing its use).  The aim was to establish which part of treatment “did the work” to change behaviour, but also measured pain intensity, and fear of pain and movement.  The treatments were information about pain and mechanisms, and the activities were those the person particularly wanted to be able to do. Their findings identified that explanations do little to pain intensity, avoidance or fear – but what actually worked was doing graded exposure. In other words, experiencing something different, DOING that something different in the real world, was more effective than talking about why someone shouldn’t be afraid. A much more recent replication of this study was conducted by Schemer, Vlaeyen, Doerr, Skoluda, Nater, Rief & Glombiewski (2018) and shows the same result: doing trumps talking about doing.

When we sit down and take a cold hard look at what we do in pain management we can see that the field has to draw on a huge range of disciplines and fields of study to understand the problems people experiencing pain have. This is, in fact, why Bonica and colleagues first established the International Association for the Study of Pain, and why multidisciplinary (and now interprofessional) pain management teams and approaches were established. None of us can possibly hold all the knowledge needed to work effectively in the area. At the same time, as health professionals working with people, we do need to have some foundation knowledge about biology, disease, illness, psychology, sociology and anthropology. These areas of study inform us as we work hard to help people get their heads around their pain. Do we need to be experts in all of these fields? Yes – if you work completely in isolation. No – if you work within an extended team (whether co-located or otherwise). Pain research will continue to push our understanding ahead – and to be responsible health professionals, we must incorporate new understandings into our practice or we risk being unprofessional and irrelevant. I would go as far as to say we’re irresponsible and harming patients if we fail to incorporate what is known about pain as a multidimensional experience. It’s time to back away from temporary guruism and move towards a far more nuanced, and perhaps less flighty approach to understanding pain.

Pain science. No, it’s not a thing. Pain being examined through multiple scientific lenses: definitely a thing.

NB for the avoidance of doubt: pain is never a “thing” but examining pain through multiple scientific lenses involves many “things”. (Merriam-Webster – click)


de Jong, J. R. M., Vlaeyen, J. W. S. P., Onghena, P. P., Goossens, M. E. J. B. P., Geilen, M. P. T., & Mulder, H. O. T. (2005). Fear of Movement/(Re)injury in Chronic Low Back Pain: Education or Exposure In Vivo as Mediator to Fear Reduction? [Article]. Clinical Journal of Pain Special Topic Series: Cognitive Behavioral Treatment for Chronic Pain January/February, 21(1), 9-17.

Schemer, L., Vlaeyen, J. W., Doerr, J. M., Skoluda, N., Nater, U. M., Rief, W., & Glombiewski, J. A. (2018). Treatment processes during exposure and cognitive-behavioral therapy for chronic back pain: A single-case experimental design with multiple baselines. Behaviour Research and Therapy, 108, 58-67.

Wood, L., & Hendrick, P. A. A systematic review and meta-analysis of pain neuroscience education for chronic low back pain: Short-and long-term outcomes of pain and disability. European Journal of Pain, 0(0). doi:doi:10.1002/ejp.1314


Wandering back from the IASP World Congress


Meetings, meanderings, mind-expansions

I’ve been away for abut 10 days, attending the World Congress of the International Association for the Study of Pain. It was a time of meetings with wonderful people I’ve met via the interwebs, with researchers and clinicians, and most importantly, with people living with pain.

It was also a time for meanderings – around the very walkable city of Boston, embracing history and looking towards the future, and mind meanderings as well.

And because it was a conference, it was also mind-expanding. New ideas, new ways of investigating this human experience of pain, new discoveries, and new applications.

… and expanding the way we help people who live with pain.

What struck me between the eyeballs?

Good things: for the first time, people living with pain were included in the proceedings. I’m reminded of the old saying from the disabilities movement “Nothing about us without us” – well, it’s finally arrived at the World Congress! There are some concerns about this move amongst clinicians, and there’s no doubt that some of the people I’ve seen for whom the experience of being seen about their pain has been disheartening, stigmatising and frustrating, are very angry. I think, though, that continuing to avoid meeting with people who are in this space serves only to fuel their rage, and perhaps it’s time for us as clinicians to learn what it is about their experiences that we can learn from.

Professor Fiona Blyth talking about the Global Burden of Disability – 21%

Another “between the eyeballs” moment was when Professor Fiona Blyth discussed the knowledge that 21% of the total global burden of disability, and that this is increasing more quickly in developing countries because of the rapidly increasing percentage of older people (with multiple MSK comorbidities) – but here’s the kicker: There has been little-to-no change in funding policies to reflect this increasing burden of disease. You read that right. Funding goes to diseases that can kill you – but very little goes to the diseases that simply leave you disabled for the rest of your days.

Not so good things: Well, much of the research shows that change is incremental and that while strategies like exercise have reasonably good research support what actually matters is that exercise gets done: the form of exercise for persistent pain is a whole lot less more important than issues of adherence (Professor Kathleen Sluka’s plenary lecture showed this).

There was a good focus on behavioural science and pain, disability and response to treatment. And plenty of emphasis on sharing the responsibility for using psychologically-informed treatments with all health professionals, not just psychologists.

Why have I included this in my “not so good things”? Because a very recent Twitter discussion suggests that there continues to be a misperception that by using a psychologically-informed treatment, the aetiology of a pain problem is therefore assumed to be psychological.

There continues to be tussling over whether a biopsychosocial (or sociopsychobiological) model has sufficient emphasis on “the bio”, along with misinterpreting the historic origins of Engel’s thinking. Various people argue that “all is bio” or “but it’s reductionist” – yet readers of Engel’s original writings will recognise an interactional systems approach, where an effect in one factor will likely have flow-on effects everywhere else.

The final “not so good” for me was the dearth of discussion about occupational therapy’s historic and ongoing involvement in pain and pain management. There were at least 20 occupational therapists at the meeting, and despite Fordyce including occupational therapists in his original behavioural approach to disability (Fordyce, Fowler & Delateur, 1968), scant evidence of occupational therapy’s important contribution to this field over the years.

This is important because occupational therapy is one of the few professions to have adopted, retained and integrated a sociopsychobiological approach to healthcare. If you’re ever thinking about asking “how does one profession use the BPS model?” maybe talking with an occupational therapist will help you.

I was lucky to have a chance to offer a piece of research conducted by Brian Rutledge and me, looking at the function of an online discussion group (yes! Facebook!). The purpose was to establish whether the group Exploring Pain Science functions as a “Community of Practice“. The answer is a resounding Yes! and you can review the poster here – click

There will be a paper forthcoming, and some further analysis of the processes used in this group.

…Why look at Facebook groups?

Well, one reason is that there was a resounding call for knowledge translation – and all manner of ways thought to be useful in this pursuit. But as far as I am aware, using Facebook groups (especially ones that have emerged “organically”) is both a popular strategy – and one that has been under-examined in pain research – for people trying to implement what they’ve read or heard from research into their daily practice.

Hope this very brief tour through just a couple of the things I’ve been pondering since this World Congress will encourage YOU and others to join IASP. It truly represents the only global organisation that is transprofessional, wedded to a biopsychosocial model of pain, and one that is progressing our understanding of pain so much.


Fordyce, W. E., Fowler, R. S., & Delateur, B. (1968). An Application of Behavior Modification Technique to a Problem of Chronic Pain. Behaviour Research and Therapy, 6(1), 105-107.


Myths about exposure therapy


Exposure therapy is an effective approach for pain-related anxiety, fear and avoidance, but exposure therapy is used less often than other evidence-based treatments, there is a great deal of confusion about graded exposure, and when it is used, it is not always well-conducted. It’s not a treatment to be used by every therapist – some of us need to challenge our own beliefs about pain, and whether it’s OK to go “into” the pain a little, or even slightly increase pain temporarily!

Below are some common misconceptions and suggestions for how to overcome them:

Misconception: Exposure therapy causes clients undue distress and has adverse consequences.

Suggestions: Although exposure therapy can lead to temporary increases in anxiety and pain, it is important to remember that these symptoms are not dangerous, and that exposure is generally carried out in a very gradual and predictable way. Exposure very rarely causes clients harm, but it is important to know your clients’ medical histories. For example, a client with a respiratory condition would not be asked to complete an exposure designed to elicit hyperventilation.

I usually begin with a really clear explanation for using this approach, basing my explanation on what the person has already said to me. By using Socratic or guided discovery, I try to understand the logic behind the person’s fear: what is it the person is most worried about? Often it’s not hurt or harm, it’s worrying that they won’t sleep, or they’ll have a flare-up that will last a looooong time – and they won’t be able to handle it. These are fundamental fears about having pain and vital to work through if the person is going to need to live with persistent pain for any length of time.

Once I’ve understood the person’s reasons for being bothered by the movements and pain, then I work on developing some coping strategies. These must be carefully carried out because it’s so easy to inadvertently coach people into using “safety behaviours” or “cues” that work to limit their contact with the full experience. Things like breath control, positive self-statements, any special ways of moving, or even ways of recovering after completing the task may serve to control or reduce contact with both anxiety and pain. I typically draw on mindfulness because it helps people focus on what IS happening, not what may have happened in the past – or may happen in the future. By really noticing what comes up before, during and after a graded exposure task, and being willing to experience them as they are, people can recognise that anticipating what might happen is often far worse than what does happen.

Finally, I’ll work through the scenario’s – either pictures of movements and activities, or descriptions of the same things. I prefer photographs (based on the Photographs of Daily Activity), because these elicit all the contextual details such as the other people, weather, flooring or surface and so on that are often factors increasing a person’s concerns. We begin with the activity that least bothers the person and consistently work up from there, with practice in the real world between sessions. I’ll go out to the places the person is most concerned about, we’ll do it together at first, then the person can carry on by themselves afterwards.

Misconception: Exposure therapy undermines the therapeutic relationship and leads to high dropout.

Suggestions: If you give your person a clear reason for using this approach and deliver it well,  the person is more likely to achieve success – and this in turn strengthens your relationship. Additionally, there is evidence that dropout rates for exposure are comparable to other treatments.

There is something about achieving a difficult thing that bonds us humans, and if you approach graded exposure with compassion, curiosity, and celebration, you may find your relationship is far more rewarding and deeper than if you simply prescribe the same old same old.

Misconception: Exposure therapy can lead to lawsuits against therapists.

Suggestions: Survey data suggest that lawsuits against therapists using exposure are extremely rare. As with any kind of therapy, you can take several steps to protect yourself from a legal standpoint. Don’t forget to obtain informed consent, ensure your treatment is delivered with competency, professionalism, and ethical consideration.

The best book/resource by far for graded exposure is Pain-Related Fear: Exposure-Based Treatment for Chronic Pain, (click) by Johan W.S. Vlaeyen, Stephen J. Morley, Steven J. Linton, Katja Boersma, and Jeroen de Jong.

Before you begin carrying out this kind of treatment, check you have these skills (from the book I’ve referenced):

Vlaeyen, Johan, Morley, Stephen, Linton, Steven, Boersma, Katja, & de Jong, Jeroen. (2012a). Pain-related Fear. Seattle: IASP Press.

The dynasty of the disc! More history in pain management


Low back pain, despite the multitude of explanations and increasing disability associated with it, has been with humans since forever. Who knows why and I’m not about to conjecture. What’s interesting is that despite ergonomic solutions (fail), increased fitness amongst many people (also a fail), surgical solutions (fail), hands on solutions (fail, fail), and a whole bunch of “special” exercises (fail, fail, fail) we still don’t have a handle on how to reduce disability from it.

I don’t think there will be many people who haven’t seen this:
I’ve never quite worked out why, when you search for imagines of disc bulges (or rather, prolapse of the nucleus pulposus – herniated or ruptured disc was the term preferred by Mixter and Ayer (1935) who proposed the notion of disc prolapse being the cause of “injuries to the spine” (Allan & Waddell, 1989), you end up with these nasty red glowing areas (see below). I think it’s because how else do you convey the idea that this is meant to be “the source of pain”.

Let’s dig back a little into history. Allan and Waddell (1989) describe the “modern” concept of the disc based on four papers: Goldthwaite (1911); Middleton & Teacher (1911); Dandy (1929) and Mixter and Barr (1934). Pathologists had described the presence of these prolapses when conducting postmortem examinations – but their patients couldn’t tell them whether they hurt, and neither was there any clinical awareness of any relationship between pain and disc prolapse. In 1911, two papers described patients with massive disc prolapses – one was a fatal case of paraplegia after a disc prolapse followed by Middleton and Teacher conducting lab experiments to see whether injury (force applied to the disc) could produce a prolapse (Middleton & Teacher, 1911). Goldthwaite described a case of paresis (not pain) after manipulation of the back, presuming that a “displaced sacroiliac joint” was responsible and identified that the nerve at the lumbosacral joint could be compressed – this was supported by later authors.

Cushing, a surgeon, performed a laminectomy which didn’t turn out well – but identified that “narrowing of the canal” might be responsible for the person’s pain, and from there the disc was blamed as the cause of “many cases of lumbago, sciatica and paraplegia”.  This narrative was followed up by other clinicians, and Mixter and Barr (1934) increased the attention given to these theories. Ultimately this led to a meeting of the minds where Mixter and Barr (Mixter being a neurologist, Barr an orthopaedic surgeon) carried out an investigation into enchondromas and and normal discs. What were thought to be tumours were mainly “normal cartilage”.  Mixter and Ayer (1935) went on to pursue the idea of disc prolapse being involved in not only cases where neurological changes were evident, but also low back pain.

Mixter and Ayer (1935) found that surgical responses were not very good – while leg pain was fixed patients still complained of a painful back. Their paper, however, emphasised that lesions of the disc were caused by “trauma” (even though history of even minor trauma was only found in 14 of their 23 cases). Canny men that they were, they noted that if trauma was involved it would “open up an interesting problem in industrial medicine”: who caused the trauma?

Well, like many ideas of the time, this one took root in an exciting climate of medical and surgical discovery – detailed descriptions of the techniques and procedures used were published, but even at that time outcome measures were not reported because, in their words “the question of liability, compensation and insurance loom large on the horizon and add complications compounded to an already knotty problem”. The meme of physical trauma to the back causing disc prolapse and subsequent back pain caught hold of the imagination, and although initially diagnosed using a myelogram, very quickly became replaced (in the name of avoiding complications, cost, discomfort and potentially missing ‘concealed’ discs) by clinical history and neurological examination.

Over the years 1930 – 1950, anaesthetics and surgery became safer and more routine – and accepted, after all look at how these surgeons patched up the brave soldiers! But by the 1970’s the enthusiasm began to wane as more patients reported adverse outcomes, and continued to experience pain.  So… it was decided disc prolapses should only be surgically managed in the case of sciatica rather than simply low back pain – but what about disc degeneration? Surely that could be the “cause”! And yes, we know that even though normal age-related changes were present, these were ignored, along with the somewhat tenuous relationship between disc changes and pain… Instead cadaver biomechanical studies were used to confirm that the disc could bulge with certain forces, and because the problem was now “degenerative” there was no cure – it would ‘inevitably’ progress. Thus the surgical fusion was brought in to play to reduce the “wear and tear” on the disc to “stabilise” the joint (though instability hadn’t been found, and fusion didn’t produce great results).

What was really striking was the move during this period towards rest as treatment. Previously bonesetters (predecessors of osteopathy and chiropractic and manual medicine) manipulated and then quickly mobilised people with low back pain. The hands-on treatment provided short-term relief but the real cure was to keep doing. Orthopaedics, however, based both on knowledge of fracture and tissue healing and ongoing use of surgery for low back pain, emphasised rest to allow “inflammation” to heal. Whether there was any inflammation is moot – what took root in the minds of medical and other practitioners was the need to rest until the pain was gone.

And that, dear ones, is how the epidemic of disability (the effect on function, limitations on what people can do, on participation) was born. It’s called iatrogenesis, or what health professionals can do to increase harm, inadvertently or not. And it’s still happening today.

We should not lay the blame for ongoing harm at the feet of orthopaedic surgeons and neurologists of the day. It was a perfect storm of media attention, community fascination with technology and miracles performed as a result of the war, the heroic soldiers and their equally heroic surgeons, the courts (in the case of industry as responsible for trauma to civilians), and of course the insurers – all over the period between 1880 – and until even today.  While outcomes are being more widely reported in orthopaedic surgery (and other treatments), changing clinical behaviour, community attitudes and the legacy of our history is slow. Cognitive dissonance is a thing… and even though 1965 saw gate control theory revolutionise our thinking about the way pain is produced, the implications are not yet fully accepted.

 

Allan, D. B., & Waddell, G. (1989). An historical perspective on low back pain and disability. Acta Orthopaedica Scandinavica, 60(sup234), 1-23.

Each time we face our fear, we gain strength, courage, and confidence in the doing – Theodore Roosevelt


I’m not certain Theodore Roosevelt actually said that – but who cares?! It’s a great statement. For the person living with persistent pain, though, it can be the last thing you want to hear. After all, it’s tough enough getting up and just doing the normal things let alone challenge yourself! So… how can a health professional help?

Let’s briefly recap. Self efficacy is the confidence I can do something successfully if I wanted to. It’s a robust predictor of many health behaviours including exercise, stopping smoking, eating healthily and coping well with persistent pain (Jackson, Wang, Wang & Fan, 2014; Williams & Rhodes, 2016). It was first introduced as a concept by Bandura as part of his theoretical model of behaviour change, and further discussed in an experimental study in a paper investigating systematic desensitisation processes, arguing that this approach to treatment created and strengthened expectations of personal efficacy (Bandura & Adams, 1977). Bandura argued that people develop a sense (expectation) of self efficacy from their own performance, watching others succeed, being persuaded by someone that yes indeed you have the skills to achieve, and also awareness of physiological arousal from which people can judge their own level of anxiety.

Self efficacy is more than a simple “general confidence” construct, however. It’s far more selective than this. For example, although I believe I can successfully dance in my lounge with no-one there and the curtains closed, this does not translate to me dancing on a stage on my own in the spotlights with an audience watching! Self efficacy refers to confidence to succeed and produce the outcome I desire in a given context – and that’s extremely important for pain management, and in particular, exercise for people experiencing pain.

How does self efficacy improve outcomes? There are at least two ways: (1) through the actions taken to manage or control pain (for example, gradually increasing activity levels but not doing too much) and (2) managing the situations associated with pain (for example, people with low self efficacy may avoid activities that increase pain, or cope by using more medication (Jackson, Wang, Wang & Fan, 2014).

To examine how self efficacy affects outcomes, Jackson and colleagues (2014) conducted a meta-analysis of papers examining this variable along with other important outcomes. Overall effect sizes for relationships between self efficacy and all chronic pain outcomes were medium and highly significant. This is really important stuff – we don’t find all that many studies where a single variable has this much predictive power!

As a moderator, the adjusted overall effect size (r=.50) of self efficacy and impairment was larger than the average effect sizes of meta-analyses on relations between disability and fear-avoidance beliefs, and pain as a threat for future damage and challenge for future opportunities. Self efficacy has stronger links with impairment than cognitive factors such as fear-avoidance beliefs and primary appraisals of pain (Jackson, Wang, Wang & Fan, 2014).  Age and duration of pain were the strongest moderators of these associations and suggest that reduced self-efficacy can become entrenched over time. In other words – as time passes, people experience fewer opportunities for success and begin to expect they won’t ever manage their pain well.

An important point is made by these authors: how we measure self efficacy matters. They found that self efficacy measures tapping “confidence in the capacity to function despite pain” had
stronger associations with impairment than did those assessing confidence in controlling pain or managing other symptoms.

Bolstering self efficacy – not just about telling people they can do it!

Given that self efficacy is domain-specific, or a construct that refers to confidence to do actions that lead to success in specified situations, here are a few of my questions:

  • Why are most people attending pain management programmes provided with gym-based programmes that don’t look at lot like the kinds of things people have to do in daily life? It’s like there’s an expectation that “doing exercise” – any exercise – is enough to improve a person’s capabilities.

    BUT while this might increase my confidence to (a) do exercise and (b) do it in a gym – but does it mean I’ll be more confident to return to work? Or do my housework?

  • How often are people attending gyms told to “push on”, or to “stop if it hurts”? And what effect does this have on people?

If their confidence is low, being told “just do it” is NOT likely to work. People need to experience that it’s possible to do things despite pain – and I think, to be able to handle a flare-up successfully. Now this is not going to happen if we adopt the line that getting rid of all pain is the aim, and that flare-ups should be avoided. If we want people to deal successfully with the inevitable flare-ups that occur, especially with low back pain, then we need to (a) be gentle, and grade the activities in an appropriate way (b) have some “ways of coping” we can introduce to people rather than simply telling them they can cope or reducing the demands (c) have other people around them also coping well (and that includes us health professionals)

  • Ensure we attribute change to the person, not to us.

That’s right: not to our sparkling personality, not to our special exercises, not to the machines we use, not to the techniques we have – you get the drift? Progress must be attributed to the person and his or her skills and perseverance. Because, seriously, all this arguing over which exercise regime is best doesn’t stack up when it’s actually self efficacy that predicts a good outcome.

And for case managers who may read this: just because someone has successfully completed an exercise programme, or a vocational programme with exercise as a component, this does not mean the person can manage successfully at work. Well, they may manage – but they may utterly lack confidence that they can. Context matters.

 

Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. Cognitive Therapy and Research, 1(4), 287-310.

Estlander AM, Takala EP, Viikari-Juntura E., (1998). Do psychological factors predict changes in musculoskeletal pain? A prospective, two-year follow-up study of a working population. Journal of Occupational and Environmental Medicine 40:445-453

Jackson, T., Wang, Y., Wang, Y., & Fan, H. (2014). Self-efficacy and chronic pain outcomes: A meta-analytic review. The Journal of Pain, 15(8), 800-814.

Williams, D. M., & Rhodes, R. E. (2016). The confounded self-efficacy construct: Conceptual analysis and recommendations for future research. Health Psychology Review, 10(2), 113-128.

The confidence that you’ll succeed if you try…


Self efficacy. It’s a word bandied about a lot in pain management, and for a group of clinicians in NZ, it’s been a shock to find out that – oh no! They’re not supporting self efficacy with their patients very much! It means “confidence that if I do this under these conditions, I’ll be successful”.

Self efficacy is part of Bandura’s social learning theory (click here for the Wikipedia entry) where he proposed that much of psychological treatment is driven by a common underlying mechanism: to create and strengthen expectations of personal effectiveness. Bandura recognised that we don’t always have to personally experiment through trial and error in order to learn. Self efficacy expectations were thought to develop from personal experience (let me do, and I’ll learn how); watching other people try (show me, and I’ll see if you succeed, then I’ll copy you); verbal persuasion that aims to convince that you have the capabilities to manage successfully (encourage me, let me know I can, and I’ll try); and how physiologically aroused or alert you are (if I feel confident inside, I’ll try but if I feel anxious or stressed I’m less inclined to) (Bandura, 1977).

Bandura and colleagues established that “different treatment approaches alter expectations of personal efficacy, and the more dependable the source of efficacy information, the greater are the changes in self-efficacy.” (Bandura & Adams, 1977, p. 288). The conclusions drawn from this mean that treatments where people DO and succeed are more effective at enhancing their belief in self efficacy, while watching others, or being told how to do something are far weaker at building this effect.

Bandura began working on this theory while pondering how psychological treatments, particularly for systematic desensitisation or graded exposure, generated their effects. Systematic desensitisation aimed to reduce arousal levels and thus avoidance while being in a relaxed state – therefore the person is exposed to increasingly “aversive” stimuli (stimuli you want to avoid) while remaining calm and relaxed. Bandura thought that there were other factors involved in avoidance behaviour, developing his theory that expectations of negative consequences alone can generate fear and defensive behaviour and that this isn’t necessarily reflected in autonomic arousal and actions. Bandura hypothesised that reducing physiological arousal improved performance not by eliminating a drive to escape – but instead by increasing the confidence that the person can successfully manage the situation.

For parents, the idea that if you believe you can do what you set out to do, is embodied in the little book “The Little Engine That Could” (Piper, 1930/1989). Remember? The little engine that couldn’t because all the bigger engines said so, but then tried and tried and believed he could – and he did!

So, what does this have to do with pain management?

Let’s paint a scenario. Allan comes to see a hands-on therapist because he has a sore back. He believes that hands-on therapy is the thing, because others have said it’s really good. He goes, gets his treatment and wow! Things improve! The next time he has a sore back (because, you know, it almost always comes back) what does he do? Well, on the basis of his past experience, he heads to his hands-on therapist, because he’s confident this will help his pain. The problem is, his therapist has moved town. He’s a bit stuck now because in his town there are not many therapists doing this particular kind of treatment – what does he do? He doesn’t believe that anyone else can help, and he has no belief that he can manage by himself. He has little self efficacy for managing his own back pain.

Self efficacy is not about whether a person can do certain movements, it’s about believing that the person can organise skills to achieve goals within a changing context – not just what I will do, under duress, but what I can do, what I’m capable of doing, and what I say I’ll probably do.

Self efficacy is not a belief that a specific behaviour will lead to a certain outcome in a certain situation, it’s the belief that I can perform that behaviour to produce the outcome.

So, self efficacy isn’t a generalised attitude – it’s a specific belief about certain actions, certain outcomes in certain situations. It’s not a personality trait like hardiness, or resilience, or general confidence or self-esteem, it’s about being confident that I can generate a solution to a problem in a particular part of my life.

The times when we’re least confident are often when we’re facing a new experience, or we’ve had a bad experience previously. Particularly if we’ve seen other people fail at the same thing, or succeed but do so with much fear and loathing. In the case of pain, there are ample opportunities to have a bad experience in the past, and to learn from other people around us that – oooh back pain is something to be afraid of, and you can’t manage it alone – you need to get help from someone else. Consequently, many people have very low self efficacy for successfully dealing with a bout of low back pain.

And health professionals: we can foster this.

How? By implying that success is due to what we do, rather than being a natural process of recovery. By suggesting it’s something about our “magic hands” or pills, or injections or surgery or special exercises, or “using the core correctly”. In doing so, we’re generating a belief that the person cannot manage alone. That it’s not what the person does, but the magic hands, pills, injections, surgery, special exercises or using the core…

Damush, Kroenke, Bair, Wu, Tu, Krebs and Poleshuck (2016) found that self management approaches to pain increase self efficacy, self management actions, and reduced pain intensity and depression in a group of community patients with chronic musculoskeletal pain and depression. A typically tough group to work with because confidence to succeed at anything is pretty low in depression. Self management aims to ensure the credit for recovery lies with the person doing things that help – creating and supporting a belief that the person has the capability to successfully manage their situation. The techniques? Simple strengthening and stretching exercises, progressive muscle relaxation, and visualisation, in a group setting. Strategies that typically don’t need technology, but do provide support. Information about the natural history of recovery was included – so people were given realistic and optimistic information about their recovery, whether it meant pain reduction, or not. The usual goal setting, problem-solving, and positive self talk were encouraged, and people set goals each week to achieve – maybe based on something from the session, or something the person wanted to do for themselves.

This is not a high-tech approach. This is simple, straightforward pain management as it has been done for years (right back as far as the mid-1970’s and Sternberg!). And through it, these people become increasingly confident that they could successfully manage their own mood and pain independently. As a business model it’s probably not the best for repeat business – but oh how good for those participants who could go away and live their lives without having to think of themselves as patients.

More on self efficacy in the next couple of weeks – we can help people to become confident that they can succeed at managing their pain if it should happen again.

 

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review,  84, 191-215.

Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. Cognitive Therapy and Research, 1(4), 287-310.

Damush, T., Kroenke, K., Bair, M., Wu, J., Tu, W., Krebs, E., & Poleshuck, E. (2016). Pain self‐management training increases self‐efficacy, self‐management behaviours and pain and depression outcomes. European Journal of Pain, 20(7), 1070-1078.

Maddux, J. E. (2016). Self-efficacy Interpersonal and intrapersonal expectancies (pp. 55-60): Routledge.

Assessing problems with sleep and pain – ii


Last week I wrote about my approach to assessing sleep problems in those with persistent pain. As an ex-insomniac I’ve spent a while learning about sleep so I can understand what’s going on, and why sleep can be such a problem. In this week’s post I want to dig a little deeper into what’s going on with poor sleep, as well as some of the unique features of sleep in people experiencing persistent pain.

Having reviewed the five main areas that are fundamental (and can/should be assessed by anyone working with people who experience persistent pain), the next area I want to look at with people is mood. There are two primary psychopathological contributors to poor sleep: the first we’ve dealt with last week (Question 4 – what’s going through your mind…) which is by far and away the most common initiator and maintainer of insomnia, and it doesn’t even need to be a diagnosable anxiety disorder! The second, you’ll probably have guessed, is depression.

Depression is common in people with both rotten sleep and ongoing pain (Boakye, Olechowski, Rashiq, Verrier, Kerr, Witmans et al, 2016), and there are some suggestions that pain and depression may be related and similar neurobiological processes may be involved for both (increased limbic activity being one of them). In depression, there is increased activity in the HPA Axis, reduced BDNF (brain-derived neurotrophic factor), and reduced 5HT with increased pro-inflammatory cytokines . In persistent pain, there may be activity in the HPA Axis, there is certainly reduced BDNF except in the spinal cord, and reduced 5HT, along with increased pro-inflammatory cytokines. And in sleep disturbances there is also increased activity in the HPA Axis, redced BDNF, reduced 5HT and guess what… increased pro-inflammatory cytokines. And all three interact with one another so that if you happen to be depressed, you’re more likely to experience pain that goes on, and your sleep will also reduce your mood and increase your pain. And the reverse. All very messy indeed!.

What this means is that assessing for low mood and the impact on sleep is important – if someone’s describing waking well before they usually do, in the wee small hours (anywhere from 3 – 5am if they usually wake at 7.00am) I’m ready to screen for low mood. To be honest I always assess for that anyway! Depression is also associated with low motivation and loss of “get up and go” so this is likely to interact with poor sleep, creating a very tired person.

There are three other very important aspects of sleep I like to assess for: sleep apnoea, where someone stops breathing for seconds to minutes at a time, often snorting awake, and this may be associated with snoring and daytime sleepiness. Often the person won’t be aware of their sleep apnoea, so it can be helpful for a bed-partner to let you know whether this is a feature of your patient’s sleep.

The next are a group of movement disorders of sleep, many of which are associated with the third area I assess, which are medications.

Movement disorders of sleep include restless leg syndrome – that feeling of absolutely having to move the legs, usually at night, and relieved by getting up to walk around, but in doing so, making it difficult to sleep. Another is periodic limb movement disorder of sleep, which can be every 5 – 30 seconds of leg twitching all night long, and in some cases, whole body twitching though this is less frequent and less rhythmic. This latter problem may not be noticed by the person – but their bed-mate will know about it! – and this problem may be associated with both sleep apnoea and restless leg, AND some doses of antidepressants. Another common contributor to these problems is low iron levels – worth checking both iron and medications!

Finally with medications, I like to understand not only what the person is taking, but also when they’re taking them. Several points are important here: some medications are usually sedating such as tricyclic antidepressants but in some people nortriptyline can paradoxically increase alertness! If that’s the case, timing the dose is really important and should be discussed with either the prescribing doctor, or a clinical pharmacist. Opioids depress respiration (ie slow breathing down) so can be problematic if the person has sleep apnoea AND is taking opioids, the drive to inhale may be less, causing more frequent and deeper periods without breathing normally. For restless legs and periodic limb movement disorder, some antidepressants (venlafaxine is one of them) in high doses can cause the twitching and once the dose is reduced, this fades away, at least a bit.  There is a very small amount of research suggesting that NSAIDs can influence sleep quality in some people also.

The effects of poor sleep are many: anything from micro-sleeps during the day (problematic while driving or operating machinery!), to more irritability, sluggish responses, less concentration and more difficulty solving problems. Pain is associated with more frequent micro-wakenings during the night (Bjurstrom & Irwin, 2016) but findings with respect to whether deep sleep, REM sleep or light sleep were consistently more affected weren’t clear.

Having completed my assessment, more or less, I can also use a few pen and paper measures: Wolff’s Morning Questions (Wolff, 1974), Kryger’s Subjective Measurements (1991), Pittsburgh Sleep Quality Index (Bysse, Reynolds, Monk et al, 1989) and the Sleep Disturbance Questionnaire (Domino, Blair,& Bridges, 1984) are all useful. Speaking to the partner is an excellent idea because I don’t know about you but I never snore but my partner swears I do! Who do you believe?!

People experiencing insomnia are not very reliable when describing their own sleep habits – we’re terrible at noticing when we’re actually asleep or awake in those early stages of sleep, so we typically think we’ve slept less than we actually have. We also do a whole lot of things to avoid not sleeping – and these can actually prolong and extend our sleeplessness!

We’ll discuss what to do about the factors you may have identified in your sleep assessment in next week’s instalment, but you can rest assured it’s not crucial for you to do anything yourself about some things. For example, if someone has sleep apnoea, referring for a sleep study is important, but not something YOU need to do! But please make sure a referral is suggested to someone who can make it happen. Similarly with medications and sleep movement disorders, it’s not something you should tackle on your own – please discuss managing these with a specialist sleep consultant, psychiatrist, or the person’s own GP. Mood problems – treat as you would any time you find someone with a mood problem.

Next week – off to the Land of Nod: A roadmap?!

 

Boakye, P. A., Olechowski, C., Rashiq, S., Verrier, M. J., Kerr, B., Witmans, M., . . . Dick, B. D. (2016). A critical review of neurobiological factors involved in the interactions between chronic pain, depression, and sleep disruption. The Clinical Journal of Pain, 32(4), 327-336.

Buysse DJ, Reynolds CF 3rd, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28(2):193–213.

Domino G, Blair G, Bridges A. Subjective assessment of sleep by Sleep Questionnaire. Percept Mot Skills 1984;59(1):163–70.

Kryger MH, Steljes D, Pouliot Z, et al. Subjective versus objective evaluation of hypnotic efficacy: experience with zolpidem. Sleep 1991;14(5):399–407.

Moul DE, Hall M, Pilkonis PA, et al. Self-report measures of insomnia in adults: rationales, choices, and needs. Sleep Medicine Reviews, 2004;8(3):177–98.

Wolff BB. Evaluation of hypnotics in outpatients with insomnia using a questionnaire and a self-rating technique. Clin Pharmacol Ther 1974;15(2):130–40.