Professional topics

Clinical reasoning and why models of low back pain need to be integrated


Clinical reasoning has been defined as “the process by which a therapist interacts with a patient, collecting information, generating and testing hypotheses, and determining optimal diagnosis and treatment based on the information obtained.” (thanks to https://www.physio-pedia.com/Clinical_Reasoning#cite_note-Higgs-1). The model or lens through which we do these processes naturally has a major influence on our relationship with the person, the information we think is relevant, the hypotheses we develop, and ultimately the problems we identify and how we treat them. No arguments so far, yes?

So when we come to thinking about pain, particularly where a “diagnosis” can’t be readily established – or where the treatment doesn’t directly address a proposed causal factor – clinical reasoning should be led by some sort of model, but how explicit is our model, really? And, what’s more, how well does the research support our model, and the relationships between variables?

I’m thinking about my approach as an occupational therapist where my interest in assessment is to identify why this person is presenting in this way at this time, and what might be maintaining their current predicament; and my aim is to identify what can be done to reduce distress and disability, while promoting participation in daily occupations (activities, things that need to be done or the person wants to do). For many years now I’ve used a cognitive behavioural model first developed by Dr Tim Sharp who has now moved into Positive Psychology. His reformulation of the cognitive behavioural model works from the “experience” of pain through to responses to that experience, but incorporates some of the cyclical interactions between constructs. The model doesn’t include inputs to the “experience” component from the nociceptive system – but it could.

Many other models exist. Some of them are quite recent – the STarT Back Tool, for example, provides a very simplified screening approach to low back pain that some people have identified as a clinical reasoning model. Another is by Tousignant-Laflamme, Martel, Joshi & Cook (2017), and is a model aimed at pulling all the various approaches together – and does so with a beautifully-coloured diagram.

But.

You knew there would be one! What I think these two models omit is to generate some relationships between the constructs, particularly the psychological ones. You see, while it’s a cyclical interaction, there are some relationships that we can identify.  And over the next few weeks I’ll be writing about some of the known associations, just to begin to build a picture of the relationships we can assess before we begin generating hypotheses.

For example, we know that the nervous system, and in particular our mind/brain, is never inactive and is therefore never a completely blank slate just waiting for information to come into it, but we also know there are relationships between the intensity/salience/novelty of a stimulus that attract attention, and that this competes with whatever cognitive set we have operating at the time (Legrain, Van Damme, Eccleston, Davis, Seminowicz & Crombez, 2009). So one relationship we need to assess is current contexts (and there are always many), and the times when a person is more or less aware of their pain.

Now, what increases the salience of a stimulus? For humans it’s all about meaning. We attribute meaning to even random patterns (ever seen dragons and horses in the clouds?!), so it’s unsurprising that as we experience something (or watch someone else experiencing something) we make meaning of it. And we generate meanings by relating concepts to other concepts – for a really good introduction to a very geeky subject, head here to read about relational frame theory. Relational frame theory is used to explain how we generate language and meanings by relating events with one another (The Bronnie translation! – for an easier version go here). Wicksell and Vowles (2015) describe this, and I’m going to quote it in full:

As described by relational frame theory, the theoretical framework underlying ACT, stimulus functions are continuously acquired via direct experiences, but also through their relations with other stimuli [5]. This implies that a behavioral response is not due to just one stimuli but rather the relational network of stimuli. Pain as an interoceptive stimulus is associated with a large number of other stimuli, and the actions taken depend on the psychological function(s) of that relational network of stimuli. A seemingly trivial situation may therefore elicit very strong reactions due to the associations being made: a relatively modest pain sensation from the neck trigger thoughts like “pain in the neck is bad,” which in turn are related to ideas such as “it may be a fragile disk,” and “something is terribly wrong,” that eventually lead to fatalistic conclusions like “I will end up in a wheelchair.” Thus, even if the initial stimulus is modest, it may activate a relational network of stimuli with very aversive psychological functions.

In other words, we develop these networks of meaning from the time we’re little until we die, and these mean any experience (situation, context, stimulus, event, action) holds meaning unique and particular to the individual. And these networks of meaning are constructed effortlessly and usually without any overt awareness. Each event/experience (yeah and the rest) then has further influence on how we experience any subsequent event/experience. So if you’ve learned that back pain is a Very Bad Thing, and you’ve done so since you were a kid because your Mother had back pain and took herself to the doctor and then stopped playing with you, you may have a very strong network of relationships built between low back pain, resting, healthcare, abandonment, sadness, anger, loneliness, fear, mother, father, pills, treatment – and the this goes on.

So when we’re beginning to construct a clinical reasoning model for something like low back pain we cannot exclude the “what does it mean” relationship. Every time someone experiences “ouch!” they’re processing a network of associations and relationships and behaviours that go on to influence their response to that experience – and affect attention to it and subsequent response to it.

Over 1000 words and I’ve not even started on emotions and pain!

Take home message: Even if we think we’re not addressing “psychological” stuff – we ARE. Omitting the “what does it mean to you?” and failing to factor that in to our clinical reasoning and subsequent treatment means we’re walking uphill on a scree slope. Oh, and telling someone they’re safe does not change those associations, especially if they’re longstanding. There’s more needed.

 

Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, & Crombez G (2009). A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain, 144 (3), 230-2 PMID: 19376654

Sharp, T. J. (2001). Chronic pain: A reformulation of the cognitive-behavioural model. Behaviour Research and Therapy, 39(7), 787-800. doi:http://dx.doi.org/10.1016/S0005-7967(00)00061-9

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485

Wicksell, R. K., & Vowles, K. E. (2015). The role and function of acceptance and commitment therapy and behavioral flexibility in pain management. Pain Management, 5(5), 319-322. doi:10.2217/pmt.15.32

Advertisements

Occupational therapists’ knowledge of pain


I am mightily bothered by health professionals’ lack of knowledge about pain. Perhaps it’s my “teacher” orientation, but it seems to me that if we work in an area, we should grab as much information about that area as possible – and pain and pain management is such an important part of practice for every health professional that I wonder why it’s so often neglected. So, to begin exploring this, I completed a search looking at occupational therapists’ knowledge of pain – and struck gold,  kinda.

Angelica Reyes and Cary Brown conducted a survey of Canadian occupational therapists, to explore how well occupational therapists knew their stuff.

Members of the Canadian Association of Occupational Therapists were asked to participate and a total of 354 therapists (mainly from Ontario, Alberta and Nova Scotia) took part. Curious that few were from British Columbia where I know of quite a few occupational therapists working in the area, but there you have it.  Over half of the respondents had 10 years or less experience – so they were fairly recent graduates and should reflect a “current” educational bias. Only 5% of the total number of members of CAOT responded, so this is a fraction of the occupational therapists working in Canada – but you’d think the motivated (ie knowledgeable) would be more likely to respond than those who don’t work in the area….

What they found was consistent with previous studies (prior to 2000) showing that these respondents, who were surveyed using the City of Boston’s Rehabilitation Professionals’ Knowledge and Attitude Survey (Rochman & Herbert, 2015), had disturbing “potential knowledge gaps” in the following areas:

  • children’s ability to feel pain;
  • use of analgesics in orthopedic pain
  • use of nondrug treatments
  • thermal modalities
  • prevalence of malingering
  • impact of therapists’ values on assessment of veracity
  • mind/body dualism in chronic pain
  • measurement of pain intensity
  • effect of under-treatment on chronicity
  • prevalence of patients who over-report pain
  • prevalence ofpatients who are likely to become addicted if treated with opioids.

Of particular concerns was 45.7% of participants believed that malingering is common; 38% believed that pain intensity can be objectively measured, 39.7% believed people with pain over-report their pain, and 59.8% believed that opioid addiction is likely to occur in more than 5% of the patient population.

OUCH!

So, it seems that these occupational therapists had some very outdated ideas about pain, and in particular, seem to have missed the point that because pain is a biopsychosocial experience, we have no way to determine whether someone is “faking” – or malingering.

Now, I will lay good money on a bet that if we were to carry out this very same survey amongst any other health profession, we’d still arrive at these rather unsavoury findings. Folks, I live in a pain nerd bubble and I still hear these kinds of discussions amongst knowledgeable health professionals, so it’s unsurprising that so many people hold these beliefs. Beliefs that will hamper developing good relationships with the people we want to help, and beliefs that fly in the face of what we know about pain.

I am SO not pointing the finger at Canadian occupational therapists, neither am I pointing the finger at my profession alone. I think this lack of understanding reflects many things:

  1. Pain is a complex experience, and the legacies of ancient models lingers everywhere (dualism, medical model, reductionism, etc);
  2. We devote very little time in our professional training to learning about pain – and often, it’s limited to “here is the nociceptive system”;
  3. The research around pain has exploded over the last 15 years – it’s hard to keep up, which is why I blog;
  4. The problem of persistent pain is under-estimated, so if a person works in paediatrics, older person’s health, neurology, brain injury, spinal cord injury – it’s quite probable that pain is almost completely ignored, because “it’s not relevant”. After all, pain is something for specialist pain services, yes? NO
  5. Prevailing attitudes within the healthcare community are that pain is a difficult area to understand – and “should” be treated with medication or surgery otherwise….

You can see that this year’s IASP Global Year for Excellence in Pain Education has much to do.

Did you know that IASP have produced NINE comprehensive curricula – including occupational therapy  (thank you to Emeritus Professor Jenny Strong, Professor Cary Brown and Dr Derek Jones for developing this wonderful resource). This means there is no reason for us not to begin integrating this import area of practice into our undergraduate training.

Research examining occupational therapy’s contribution within pain management is in its infancy – but oh how my occupational therapy heart went pit-a-pat when, at the Australian and New Zealand Pain Society Scientific Meeting I presented alongside two other occupational therapists with PhD’s (or nearly there!) to a room full of clinicians, not just occupational therapists. While we have little specifically occupational therapy research, occupational therapists have been and are continuing to be part of research efforts around the world. And what clinicians do is apply what is learned into the daily lives of the people we work with. That, friends, is what occupational therapy is about – helping people live full, rich lives doing what’s important to them.

Reyes, A. N., & Brown, C. A. (2016). Occupational therapists’ pain knowledge: A national survey. Disability and Rehabilitation: An International, Multidisciplinary Journal, 38(13), 1309-1317.

Rochman D, Herbert P. Rehabilitation professionals knowledge and attitudes regarding pain (COBS). Accessed 18 March 2015. Available from: http://prc.coh.org/html/rehab_professionals.htm.

When it hurts – but it’s important to keep doing


To date, despite years of research and billions of dollars, there is no satisfactory way to reduce pain in all people. In fact, our pain reduction treatments for many forms of persistent pain are pretty poor whether we look at pharmaceuticals, surgery, psychological treatments or even exercise. What this means is there are a lot of disillusioned and frustrated people in our communities – yet life carries on, and people do keep doing!

In an effort to understand what might help people who don’t “find a cure”, researchers and clinicians have been looking at mediators. Mediators are factors that explain a relationship between two variables. In the study I’m examining today, the predictor is pain intensity, and the criterion variable is participating in valued life activities (the things we want or need to do). The research question was whether self-efficacy and/or pain acceptance mediated engaging in valued life activities.

Ahlstrand, Vaz, Falkmer, Thyberg and Bjork (2017) used a cross-sectional study to explore relationships between the variables above in a group of people with rheumatoid arthritis (RA), drawn from three rheumatology registers in South East Sweden. Participants were required to have confirmed RA; be between 18 – 80 years; have had RA for four years or more; and have data included in the quality register – a total of 737 people agreed to take part (from a total of 1277 meeting entry criteria).

The researchers used the Swedish versions of Health Assessment Questionnaire (Wolfe, 1989) to establish degree of difficulty in daily activities, as well as the Valued Life Activities scale (Katz, Morris & Yellin, 2006); the Arthritis Self-Efficacy Scale (Lorig, Chastain, Ung, Shoor & Holman, 1989); and the Chronic Pain Acceptance Questionnaire (Wicksell, Olsson & Melin, 2009).
The statistical analyses included Chi-square tests of independence to identify significant differences in categorical factors due to gender, and steps were taken to establish whether there were gender differences for pain acceptance, self-efficacy and valued life activities. Pearson correlations were used to explore the relationships between acceptance, self efficacy and the valued life activities summary score, and then univariate regressions were undertaken to test each individual factor (eg pain, pain acceptance and self efficacy on valued life activities). Then, only the significant contributors in univariate analyses where entered into the hierarchical linear regression models. The tests were to establish whether self-efficacy would predict valued life activities after acceptance and pain scores were considered.

Finally, structural equation modelling was used to examine the contribution and influence of pain, activity engagement and self-efficacy on difficulties performing valued life activities. A note here: The authors used the structure of the ICF model to name the constructs in their structural equation model.

What did they find?

The people who responded to this survey tended to be less active than those who were on the registers but didn’t respond, so we need to keep this in mind when we interpret their results. They found that women reported slightly more pain than men, but there were no differences between men and women on all measures except that men scored more highly on the symptom control subscale of the self-efficacy measure. A point to note here is that, unlike the Pain Self Efficacy Questionaire, this measure includes attempts to reduce or control pain and/or disability, so it’s a slightly different construct from the PSEQ which measures confidence to engage in doing things despite the pain.

In terms of pain, pain acceptance, and arthritis self-efficacy, there were low to moderate associations between these and engaging in valued life activities. In fact, all pain acceptance and self-efficacy constructs measured in this study were associated with performing valued life activities. In other words, when people are confident, and willing to do things and engage in activities despite pain, the more valued activities they actually do. In fact, one of the more striking findings was a negative relationship between activity engagement and performing valued life activities – those with lower activity engagement scores reported great difficult engaging in what was important to them (not especially surprising given that both scales are about doing what’s important and getting on with life).

Now for the really geeky model: structural equation modeling found a rather complex relationship between all the variables – so complex I’m going to include the diagram.

What does it show? Well, there’s a relationship between pain intensity and valued activity engagement – the more pain, the less people do what’s important. BUT this is mediated by “personal factors” (remember the ICF labels). These personal factors are the pain acceptance activity engagement, self-efficacy for pain and self-efficacy for symptoms. Interestingly, pain willingness, the other subscale on the pain acceptance scale, wasn’t correlated.

Or is it surprising? To my mind there are some interesting conceptual issues with this study. Firstly, in a group that is self-selected and represents slightly more disability than those who didn’t respond, it’s not surprising that pain intensity and disability were correlated. This is something we see often pre-treatment in chronic pain settings. It’s also no surprise to me that the Arthritis self-efficacy scales were associated with valued activities, and with activity engagement – the arthritis self-efficacy scales ask “How certain are you that you can decrease your pain quite a bit?”; “How certain are you that you can that you can make a small-to moderate reduction in your arthritis pain by using methods other than taking extra medication?” amongst other questions. These suggest that pain reduction is a primary aim in arthritis management. The Chronic Pain Acceptance Questionnaire, however, is a very different beast. The Activity Engagement scale is about doing things that are valued (similar to the Valued Life Activity scale), while the  Willingness scale is about being willing to live life again despite pain – for example “I am getting on with the business of living no matter what my level of pain is.”; “It’s not necessary for me to control my pain in order to handle my life well.”.

While the authors argue that this study shows the value of self efficacy, stating “Active management promotes a sense of confidence, or self-efficacy, for dealing with pain that is associated with improved participation in daily activities and wellbeing.” I think the Arthritis Self-Efficacy Scale’s focus on controlling pain and other symptoms is incompatible with the constructs implied in the CPAQ. The ACT (Acceptance and Commitment Therapy) approach to pain is, as I’ve mentioned many times, a focus on engaging in valued activities irrespective of pain intensity – a more achievable goal for many than becoming confident to reduce pain as the ASES measures.

To their credit, the authors also indicate that men and women who continue to experience pain despite optimal medical treatment might benefit from strategies to increase their confidence to manage their own symptoms – but that a focus on pain control instead of participation despite pain is probably unhelpful. They go on to say that “by focusing on pain aceptance and activity engagement despite pain, self-management strategies may change the focus from pain control to a more flexible engagement in valued activities.” I couldn’t agree more – and I wish they’d used the Pain Self Efficacy Questionnaire instead of the ASES in this study. Maybe we need more discussion about appropriate measures in rheumatology research.

 

Ahlstrand, I., Vaz, S., Falkmer, T., Thyberg, I., & Björk, M. (2017). Self-efficacy and pain acceptance as mediators of the relationship between pain and performance of valued life activities in women and men with rheumatoid arthritis. Clinical Rehabilitation, 31(6), 824-834. doi:10.1177/0269215516646166

Katz PP, Morris A and Yelin EH. (2006). Prevalence and predictors of disability in valued life activities among individuals with rheumatoid arthritis. Annals of Rheumatology Diseases. 65: 763–769.

Lorig K, Chastain RL, Ung E, Shoor S and Holman HR. (1989). Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis & Rheumatism, 32(1): 37–44.

Wicksell RK, Olsson GL and Melin L. (2009). The Chronic Pain Acceptance Questionnaire (CPAQ)-further validation including a confirmatory factor analysis and a comparison with the Tampa Scale of Kinesiophobia. European Journal of Pain, 13: 760–768.

Wolfe F. (1989). A brief clinical health assessment instrument: CLINHAQ. Arthritis & Rheumatism,  32 (suppl): S9

Do pain management programmes really influence “doing” in daily life?


Disability and coping are two of the most important targets in persistent pain management, along with distress and pain intensity (the latter perhaps being the most difficult to influence). A question, however, is whether existing measures of disability truly capture the activities or occupations that people most value. For example, if house cleaning is just not my thing, even if my functioning improved over the course of a programme, would I choose to spend that new capability on vacuum-cleaning or out there in the garden?!

The Westhaven-Yale Multidimensional Pain Inventory (MPI)(Kerns, Turk & Rudy, 1985)  is a true workhorse of pain management measurement: It’s a measure that provides, via the subscales, an estimate of the complex inter-relationships involved in pain-related disability and distress. Three profiles of coping approach have been derived from the MPI indicating “Adaptive Coping” – the person is likely to continue to improve and engage in living well if they carry on as they are; “Interpersonally Distressed” – the person is experiencing difficulties with relationships and is feeling unsupported by others around them; and “Dysfunctional” – the person is struggling with their pain, and both disability and distress can feel overwhelming.

But the disability components of the MPI don’t really indicate the kinds of activities that people might be passionate about – or those that are relevant to their lives. The items are about general activities people “typically” do – in a North American setting. I know they’ve been validated in many different populations but they still represent a general idea of activity and function rather than the unique and idiosyncratic occupations that people do. (What's the difference? An occupation is the unique way I perform the important tasks of my day - the way I dash around the house while simultaneously cleaning my teeth, getting the dogs outside, making sure the curtains are opened and the appliances off just before I head out the door! We could call this "getting ready for work" but the way I do it, and the way you do it is probably very different!)

Why is that important? Well, because people value different occupations differently, and because values drive motivation, a broad measure of disability may not capture the true value of a pain management programme. And this is why the Canadian Occupational Performance Measure (COPM) (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990) is often used by occupational therapists to establish exactly what it is a person wants to be able to do. Goal Attainment Scaling is another option.

The study

In this study by Persson, Eklund, Lexell & Rivano-Fischer (2017), the aims were to assess longterm changes in MPI profiles over the course of a year; to look at associations between “Adaptive Coper” profiles at follow-up and improvements in occupational performance; and to look at factors at baseline that might be used to predict changes over time. Participants were, as usual, attending a tertiary pain management centre at a University hospital. They took part in a 21 day programme (oh the luxury of time!), and were seen by a team working together (oh the luxury of a co-located team!) including a psychologist, physician, physiotherapist, occupational therapist and social worker (oh for interprofessional teamwork!). The measures taken at pre and post were the MPI, COPM, and background demographic details.

Now here’s where the analysis gets pretty technical: dropout rates and pre-treatment differences amongst the MPI profiles were analysed using Matt-Whitney U, Kruskal-Wallis, chi-squared and independent t-test. Cross-tabs were used to describe the distribution of the MPI profiles. McNemar’s test was used to assess changes over time on each of the four profiles, and ultimately the participants were grouped into four profiles: never AC (Adaptive coper); losing AC; gaining AC, and stable AC, and these groupings were used to analyse associations between changes in MPI profile and changes on COPM from baseline to follow-up. And this, folks, is why occupational therapists NEED to learn statistical analyses! Because they went on to use univariate and multivariate logistic regressions to see whether demographic factors would predict these profiles at follow-up, incorporating satisfaction and performance scores on COPM.

What did they find?

More participants started the programme with a profile of dsyfunctional or interpersonally distressed than adaptive coper – and at both discharge and follow-up the adaptive coping group increased to be the largest subgroup. 20% of the participants ended up in the “gaining AC” group, 11% the “stable AC” group, 6% formed the “losing AC” group, and 63% were never in the adaptive coping group at all. Not so terrific in terms of broad outcome measures, but pretty consistent with other programmes around the world.

On the more individualised outcome measure of the COPM, people in the never AC group showed least clinically relevant improvement, both the stable AC and gaining AC groups showed more improvement on occupational performance and satisfaction with performance than the never AC group, while the stable AC group improved more than the losing AC group in terms of occupational performance changes.

Long-term changes showed those who started as AC were more likely to stay that way over time, and baseline scores for occupational performance were significantly associated with being AC at follow-up – in other words, people who felt OK about what they could do in terms of occupation, tended to become more capable and less disabled over time as measured by the MPI. More importantly, those people who had higher baseline scores on occupational satisfaction were 1.3 times more likely to shift to the AC group over time. “Clinically relevant improvements on performance and satisfaction with performance at 1-year follow-up, in occupations prioritized by the participants, were associated with having an AC profile at follow-up.” (p. 6).

Confidence in doing important occupations breeds confidence in other parts of living with persistent pain.

What does this all mean anyway?

Well, importantly, people who shifted from one of the other profiles to adaptive coping over a year showed clinically relevant improvements in occupational performance and satisfaction with performance – the authors suggest these findings show improvements on and satisfaction with “doing and performing” important occupations. Not being classified into adaptive coping at any time was associated with least improvement in occupational performance and satisfaction. There is an association between “doing/performing” and “coping/adapting” that hasn’t really been studied. Perhaps starting with things people enjoy instead of beating them over the head with things they’ve never been interested in could improve pain management outcomes. Pain management programmes DO influence doing in real life – if real life doing is used as therapy!

The authors also point out that “30–47% of participants who did not show an AC profile at follow-up still showed clinically relevant improvements on occupational performance and on
satisfaction with occupational performance.” (p. 8) This suggests that the MPI coping profiles only represent one part of the outcomes that are important to individuals: occupation being the individualised daily doings that people value very highly, and pointing to the need to explore individualised outcome measurement in more studies. Given that patient-centred pain management is based on individual goals, using only generic measures is likely to give misleading outcomes about treatment efficacy.

 

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

Persson, E., Eklund, M., Lexell, J., & Rivano-Fischer, M. (2017). Psychosocial coping profiles after pain rehabilitation: Associations with occupational performance and patient characteristics. Disability and Rehabilitation: An International, Multidisciplinary Journal, 39(3), 251-260.

Thinking the worst – and willingness to do things despite pain


Catastrophising, perhaps more than any other psychological construct, has received pretty negative press from people living with pain. It’s a construct that represents a tendency to “think the worst” when experiencing pain, and I can understand why people who are in the middle of a strong pain bout might reject any idea that their minds might be playing tricks on them. It’s hard to stand back from the immediacy of “OMG that really HURTS” especially when, habitually, many people who have pain try so hard to pretend that “yes everything is really all right”. At the same time, the evidence base for the contribution that habitually “thinking the worst” has on actually increasing the report of pain intensity, increasing difficulty coping, making it harder to access effective ways around the pain, and on the impact pain has on doing important things in life is strong (Quartana, Campbell & Edwards, 2009).

What then, could counter this tendency to feel like a possum in the headlights in the face of strong pain? In the study I’m discussing today, willingness to experience pain without trying to avoid or control that experience, aka “acceptance”, is examined, along with catastrophising and measures of disability. Craner, Sperry, Koball, Morrison and Gilliam (2017) recruited 249 adults who were seeking treatment at an interdisciplinary pain rehabilitation programme (at tertiary level), and examined a range of important variables pre and post treatment.  Participants in the programme were on average 50 years old, mainly married, and white (not a term we’d ever use in New Zealand!). They’d had pain for an average of 10.5 years, and slightly less than half were using opioids at the time of entry to the programme.

Occupational therapists administered the Canadian Occupational Performance Measure, an occupational therapist-administered, semi-structured interview designed to assess a person’s performance and satisfaction with their daily activities (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990). The performance scale was used in this study, along with the Chronic Pain Acceptance Questionnaire (one of my favourites – McCracken, Vowles & Eccelston, 2004); the Pain Catastrophising Scale (Sullivan, Bishop & Pivik, 1995), The Patient Health Questionnaire-9 (Kroenke, Spitzer & Williams, 2001); and The Westhaven-Yale Multidimensional Pain Inventory (Kerns, Turk & Rudy, 1985).

Now here’s where the fun begins, because there is some serious statistical analysis going on! Hierarchical multiple regression analyses is not for the faint-hearted – read the info about this approach by clicking the link. Essentially, it is a way to show if variables of your interest explain a statistically significant amount of variance in your Dependent Variable (DV) after accounting for all other variables. Or, in this study, what is the relationship between pain catastrophising, acceptance and pain severity – while controlling for age, gender, opioids use, and pain duration. The final step was to enter a calculation of the interaction between catastrophising and acceptance, and to enter this into the equation as the final step. A significant interaction suggests one of these two moderates the other – and this is ultimately captured by testing the slopes of the graphs. Complex? Yes – but a good way to analyse these complex relationships.

Results

Unsurprisingly, pain catastrophising and acceptance do correlate – negatively. What this means is that the more a person thinks the worst about their pain, the less willing they are to do things that will increase their pain, or to do things while their pain is elevated. Makes sense, on the surface, but wait there’s more!

Pain catastrophizing was significantly (ps < .01) and positively correlated with greater perceived pain intensity, pain interference, distress due to pain, and depression – and negatively correlated with occupational therapist-rated functioning. Further analysis found that only pain catastrophising (not acceptance) was associated with pain severity, while both catastrophising and acceptance predicted negative effect (mood) using the WHYMPI, but when the analysis used the PHQ-9, both pain catastrophising and pain acceptance uniquely predicted depressive symptoms.  When pain interference was used as the dependent variable, pain acceptance uniquely predicted the amount of interference participants experienced, rather than catastrophising. The final analysis was using the performance subscale of the COPM, finding that pain acceptance was a predictor, while catastrophising was not.

What does all this actually mean?

Firstly, I found it interesting that values weren’t used as part of this investigation, because when people do daily activities, they do those they place value on, for some reason. For example, if we value other people’s opinions, we’re likely to dress up a bit, do the housework and maybe bake something if we have people come to visit. This study didn’t incorporate contexts of activity – the why question. I think that’s a limitation, however, examining values is not super easy, however it’s worth keeping this limitation in mind when thinking about the results.

The results suggest that when someone is willing to do something even if it increases pain, or while pain is elevated, this has an effect on their performance, disability, the interference they experience from pain, and their mood.

The results also suggest that catastrophising, while an important predictor of pain-related outcomes, is moderated by acceptance.

My question now is – what helps someone to be willing to do things even when their pain is high? if we analyse the CPAQ items, we find things like “I am getting on with the business of living no matter what my level of pain is.”;  “It’s not necessary for me to control my pain in order to handle my life well.”; and “My life is going well, even though I have chronic pain.”. These are important areas for clinicians to address during treatment. They’re about life – rather than pain. They’re about what makes life worth living. They’re about who are you, what does your life stand for, what makes you YOU, and what can you do despite pain. And these are important aspects of pain treatment: given none of us can claim a 100% success rate for pain reduction. Life is more than the absence of pain.

 

 

Craner, J. R., Sperry, J. A., Koball, A. M., Morrison, E. J., & Gilliam, W. P. (2017). Unique contributions of acceptance and catastrophizing on chronic pain adaptation. International Journal of Behavioral Medicine, 24(4), 542-551.

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56.

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine. 16(9), 606-13.

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

McCracken LM, Vowles KE, Eccleston C. (2004). Acceptance of chronic pain: component analysis and a revised assessment method. Pain. 107(1–2), pp159–66.

Quartana PJ, Campbell CM, Edwards RR. (2009) Pain catastrophizing: a critical review. Expert Reviews in Neurotherapy, 9, pp 745–58.

SullivanMLJ, Bishop SR, Pivik J. (1995). The Pain Catastrophizing Scale: development and validation. Psychological Assessment. 7:524–32.

Using more than exercise for pain management


In the excitement and enthusiasm for exercise as a treatment for persistent pain, I wonder sometimes whether we’ve forgotten that “doing exercise” is a reasonably modern phenomenon. In fact, it’s something we’ve really only adopted since our lifestyle has moved from a fairly physically demanding one, to one more sedentary (Park, 1994). I also wonder if we’ve forgotten that exercise is intended to promote health – so we can do the things we really want or need to do. Remembering, of course, that some people find exercise actually exacerbates their pain (Lima, Abner & Sluka, 2017), and that many folks experience pain as an integral part of their exercise (think boxing, marathon running, even going to a gym – think of the pain of seeing That Much Lycra & Sweat).

While it’s become “exercise as medicine” in modern parlance (Pedersen & Saltin, 2015; Sallis, 2009; Sperling, Sadnesara, Kim & White, 2017), I wonder what would happen if we unpacked “exercise” and investigated what it is about exercise that makes it effective by comparison with, say, activities/occupations that incorporate whole body movement?

One of the factors that’s often omitted when investigating coping strategies or treatments, especially lifestyle/self management ones, is the context and meaning people give to the activity. Context is about the when, where and how, while meaning is the why. Whether the positives (meaning, and values people place on it) outweigh the negatives (let’s face it, the lycra and sweat and huffing and puffing does not inherently appeal) are factors that enhance (or not) adherence to exercise and activity. One positive is a sense of flow, or “an optimal subjective psychological state in which people are so involved in the activity that nothing else seems to matter; the experience itself is so enjoyable that people will do it even at great cost, for the sheer sake of doing it”(Csikzentmihalyi, 1990, p. 4). I can think of a few things I lose myself in – reading a good book; fishing; paddling across a lake; photography; silversmithing; gardening…

Robinson, Kennedy & Harmon (2012) examined the experiences of flow and the relationship between flow and pain intensity in a group of people living with persistent pain. Their aim was to establish whether flow was an “optimal” experience of people with chronic pain. Now the methodology they used was particularly interesting (because I am a nerd and because this is one technique for understanding daily lived experiences and the relationships between variables over time). They used electronic momentary assessment (also known as ecological momentary assessment) where participants were randomly signaled seven times a day for one week to respond to a question about flow. Computationally challenging (because 1447 measurement moments were taken – that’s a lot of data!), although not using linear hierarchical modeling (sigh), they analysed one-way between group analyses of variance (ANOVA) to explore differences in pain, concentration, self-esteem, motivation, positive affect and potency across four named states “flow, apathy, relaxation and anxiety”. We could argue about both the pre-determined states, and the analysis, but let’s begin by looking at their findings.

What did they find?

People in this study were 30 individuals with persistent pain attending a chronic pain clinic. Their ages ranged from 21 – 77 years, but mean age was 51, and there were 20 women and 10 men (remember that proportion). People had a range of pain problems, and their pain had been present for on average 68 months.

The contexts (environments) in which people were monitored were at home, or “elsewhere”, and, unsurprisingly, 71% were at home when they were asked to respond. Activities were divided into self-care, work and leisure (slightly less time in work than in leisure or self care respectively).  The purpose of the activities were necessity (35%), desire (40%), or “nothing else to do” (18%). And most people were doing these things with either alone or with family, with very small percentages with friends, colleagues or the general public.

Now we’d expect that people doing things they feel so wrapped up in that nothing else matters should experience lower pain – but no, although this was hypothesised, pain intensity scores during flow trended lower – but didn’t actually reach significance. When we add the findings that concentration, self-esteem, motivation, and potency mean scores were highest in the flow state and mean scores were lowest in the apathy and anxiety states, we can begin to wonder whether engaging in absorbing activities has a major effect on pain intensity – or whether the value placed on doing the activities is actually the most important feature for people with pain. Interestingly, people felt their flow experiences while outside the home: this happened rather less often than being in the home, where apathy was most present. So… doing something absorbing is more likely to occur away from home, while remaining at home is associated with more apathy and perhaps boredom. Finally, flow occurred in work settings more than elsewhere, suggesting yet again that work is a really important feature in the lives of all people, including people living with pain. Of course that depends on the kind of work people are doing…and the authors of this paper indicate that people with persistent pain in this study have few places in which they can do highly engaging activities, even including work.

What does this mean for exercise prescription?

Engaging people in something that holds little meaning, has little challenge and may not be in the slightest bit enjoyable is probably the best way to lose friends and have clients who are “noncompliant”. I think this study suggests that activities that provide challenge, stimulation, movement possibilities, the opportunity to demonstrate and develop skill – and that people find intrinsically lead to flow – might be another way to embrace the “movement is medicine” mantra. I wonder what would happen if we abolished “exercises” and thought about “movement opportunities”, and especially movement opportunities in which people living with pain might experience flow? I, for one, would love to see occupational therapists begin to examine flow experiences for people living with pain and embraced the creativity these experiences offer for the profession.

 

 

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Collins.

Lima, L. V., Abner, T. S., & Sluka, K. A. (2017). Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. The Journal of physiology, 595(13), 4141-4150.

Park, R. (1994). A Decade of the Body: Researching and Writing About The History of Health, Fitness, Exercise and Sport, 1983-1993. Journal of Sport History, 21(1), 59-82. Retrieved from http://www.jstor.org/stable/43610596

Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports, 25(S3), 1-72.

Robinson, K., Kennedy, N., & Harmon, D. (2012). The flow experiences of people with chronic pain. OTJR: Occupation, Participation and Health, 32(3), 104-112.

Sallis, R. E. (2009). Exercise is medicine and physicians need to prescribe it!. British journal of sports medicine, 43(1), 3-4.

Sperling, L. S., Sandesara, P. B., Kim, J. H., & White, P. D. (2017). Exercise Is Medicine. JACC: Cardiovascular Imaging, 10(12).

One-session instruction in pacing doesn’t work


If there’s one form of coping strategy that occupational therapists love, it has to be the idea of “pacing”. Of course, the concept of pacing is vexed: we don’t have a good definition that’s widely accepted so it’s difficult to know whether we’re doin’ it right, but the idea of chunking down the amount of activity carried out at any one time is widely used as one way for people to sustain activity involvement despite pain and fatigue.

Today I’m looking at an old paper (from 2016) where people with osteoarthritis (hip or knee) were given instruction in time-based activity pacing by an occupational therapist. Surprisingly, this was a three-arm randomised controlled study, where 193 people were randomised into tailored activity pacing, general activity pacing, or usual care. I say surprisingly because RCT’s are fairly rare in occupational therapy research in persistent pain, and nigh on impossible to get funding for (sigh).

The definition of pacing used in this study was “the regulation of activity level and/or rate in the service of an adaptive goal or goals” (Nielson, Jensen, Karsdorp & Vlaeyen, 2013) although the form of pacing offered by clinicians working in this field is still unclear. In this study, the “tailored” group underwent seven days of monitoring using an accelerometer, the results were downloaded, analysed and an individualised pacing plan developed by the therapists. The plan was intended to highlight times when the person had high or low levels of activity (as compared with their own average, and averages drawn from previous studies of people with the same diagnosis), and to point out associations between these activity levels and self reported symptoms. Participants were then provided with ideas for changing their activity levels to optimise their ability to sustain activity and minimise symptom fluctuation.

In the “general” pacing group, participants were given the same sorts of instructions, but instead of using objective data from their own activities, they were asked to recall their past situations and symptoms, and broad guidelines were given instead. Both groups had three sessions with comparable educational material.

In the usual care group, participants were instructed to carry on with their usual approach to activity, and were assessed at baseline, 10 weeks and six months, using the same assessment process as those in the experimental arms.

Outcome measures were fatigue, measured by the Brief Fatigue Inventory (Mendoza, Wang, Cleeland, Morrissey, Johnson, Wendt & Huber, 1999); and the 8-item PROMIS fatigue short form. Pain severity was measured using the pain subscale drawn from the WOMAC. Additional measures included the 6-minute walk test; the WOMAC physical disability short form scale; the Arthritis Self-Efficacy Scale; the CES-D depression measure, and various demographic and disease measures (joint space narrowing, osteophyte formation etc). Finally, to determine activity pacing adherence, the pacing subscale of the Chronic Pain Coping Inventory was used (Jensen, Turner, Romano & Strom, 1995).

What did they find?

Well, you may have guessed from the title of this post: although people given the pacing intervention said they benefited, and they changed the way they carried out daily activities, the results showed that although they did so, the only significant change on measures taken was for WOMAC pain, in which the people in the general pacing group reduced their pain over the first 10 weeks. BUT participants in the usual care group reduced their pain over six months!

What does this mean?

Should we all throw out the idea of paced activities? Should occupational therapists despair and go back to the drawing board?

I don’t think so, and here’s why.

I think targeting pain intensity is possibly the wrong outcome in a study like this. We already have a vast collection of studies showing that pain intensity and disability are not well-correlated. Pain intensity alone isn’t the main reason people stop doing things when they have osteoarthritis – it’s often fear that the pain signifies “bone on bone” and “wear and tear” and “cartilage disintegration” (Hendry, Williams, Markland, Wilkinson & Maddison, 2006). And we also know that people with osteoarthritis develop their own self-management strategies and that these focus on maintaining everyday social roles and valued activities (Morden, Jinks, Bie Nio, 2011). Values seem to help people engage in demanding activities, whether the demands are because the activities hurt, or they’re physically demanding, or they’re not our favourite thing to do (think vacuum cleaning when Mum is coming to visit!) (McCracken & Keogh, 2009).

Perhaps, by drawing attention to both activities and pain intensity, the therapists in this study created a situation where pain intensity became more salient to the participants. Perhaps, too, aiming to reduce pain doesn’t take into account the other values people may hold. For example, even if I’m sore I’ll rush around cleaning if I know my parents (or other visitors) are coming to visit. My pain intensity matters less than feeling embarrassed at an untidy house.

I think we need to revisit the aims of pacing activity. To me there are several reasons for having the strategy available when/if needed:

  1. If I want to work consistently at something that’s going to take a week or two to do. Example: I recently laid bricks under my cherry tree. I did this over three weekends because digging into really hard soil, heaving bags of sand, and placing the bricks is something that increases my pain quite a lot. Because I have other things to achieve over the weekend and during the week, and laying the bricks wasn’t a top priority, I chose to do about a metre square each day of each weekend.
  2. If I’m aiming to do something quite demanding – like go on a two-day tramp (hike). I’ll try to build my activity tolerance over similar terrain with similar loads in advance of the actual trip.
  3. If I really loathe the job and would otherwise avoid it… For example, vacuuming and mopping my floors. I’ll do a room at a time because I seriously do not enjoy housework!

Looking at activity management in isolation from what a person believes is important makes this strategy pretty unpalatable. Combine it with values, and we’re starting to see something that can be employed flexibly and when it’s workable.

 

Hendry, M., Williams, N. H., Markland, D., Wilkinson, C., & Maddison, P. (2006). Why should we exercise when our knees hurt? A qualitative study of primary care patients with osteoarthritis of the knee. Family Practice, 23(5), 558-567.

Jensen MP, Turner JA, Romano JM, Strom SE. (1995). The Chronic Pain Coping Inventory: development and preliminary validation. PAIN ;60, 203–16.

McCracken, L. M., & Keogh, E. (2009). Acceptance, mindfulness, and values-based action may counteract fear and avoidance of emotions in chronic pain: An analysis of anxiety sensitivity. The Journal of Pain, 10(4), 408-415. doi:http://dx.doi.org/10.1016/j.jpain.2008.09.015

Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK, Huber SL. (1999). The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer 85, 1186–96.

Murphy, S. L., Kratz, A. L., Kidwell, K., Lyden, A. K., Geisser, M. E., & Williams, D. A. (2016). Brief time-based activity pacing instruction as a singular behavioral intervention was not effective in participants with symptomatic osteoarthritis. Pain, 157(7), 1563-1573.

Morden, A., Jinks, C., & Bie Nio, O. (2011). Lay models of self-management: How do people manage knee osteoarthritis in context? Chronic Illness, 7(3), 185-200.

Nielson WR, Jensen MP, Karsdorp PA, Vlaeyen JW. (2013). Activity pacing in chronic pain: concepts, evidence, and future directions. Clinical Journal of Pain, 29, 461–8.

Persson, D., Andersson, I., & Eklund, M. (2011). Defying aches and revaluating daily doing: Occupational perspectives on adjusting to chronic pain. Scandinavian Journal of Occupational Therapy, 18(3), 188-197. doi:http://dx.doi.org/10.3109/11038128.2010.509810

One way of using a biopsychosocial framework in pain management – vi


I could write about a BPS (biopsychosocial) model in every single post, but it’s time for me to explore other things happening in the pain management world, so this is my last post in this series for a while. But it’s a doozy! And thanks to Eric Bowman for sharing an incredibly relevant paper just in time for this post…

One of the problems in pain management is that there are so many assessments carried out by the professionals seeing a person – but very little discussed about pulling this information together to create an overall picture of the person we’re seeing. And it’s this aspect I want to look at today.

My view is that a BPS approach provides us with an orientation towards the multiple factors involved in why this person is presenting in this way at this time (and what is maintaining their presentation), and by integrating the factors involved, we’re able to establish a way to reduce both distress and disability. A BPS approach is like a large-scale framework, and then, based on scientific studies that postulate mechanisms thought to be involved, a clinician or team can generate some useful hypotheses through abductive reasoning, begin testing these – and then arrive at a plausible set of explanations for the person’s situation. By doing so, multiple different options for treatment can be integrated so the person can begin to find their way out of the complex mess that pain and disability can bring.

The “mechanisms” involved range from the biological (yes, all that cellular, genetic, biomechanical, muscle/nerve/brain research that some people think is omitted from a BPS approach IS included!), to the psychological (all the attention, emotion, behavioural, cognitive material that has possibly become the hallmark of a BPS approach), and eventually, to the social (interactions with family, friends, community, healthcare, people in the workplace, the way legislation is written, insurers, cultural factors and so on). That’s one mess of stuff to evaluate!

We do have a framework already for a BPS approach: the ICF (or International Classification of Functioning, Disability and Health) provides one way of viewing what’s going on, although I can empathise with those who argue that it doesn’t provide a way to integrate these domains. I think that’s OK because, in pain and disability at least, we have research into each one of these domains although the social is still the most under-developed.

Tousignant-Laflamme, Martel, Joshi & Cook (2017) provide an approach to help structure the initial domains to explore – and a way to direct where attention needs to be paid to address both pain and disability.

What I like about this model (and I urge you to read the whole paper, please!) is that it triages the level of complexity and therefore the intervention needed without dividing the problem into “physical” and “psychosocial”. This is important because any contributing factor could be The One to most strongly influence outcome – and often an integrated approach is needed, rather than thinking “oh but the biological needs to be addressed separately”.

Another feature I like about this model is the attention paid to both pain and disability.

Beginning from the centre, each of the items in the area “A” is something that is either pretty common, and/or easily modified. So, for example, someone with low back pain that’s eased by flexion, maybe has some osteoarthritis, is feeling a bit demoralised and worries the pain is going to continue, has a job that’s not readily modified (and they’re not keen on returning) might need a physiotherapist to help work through movement patterns, some good information about pain to allay their worries, an occupational therapist to help with returning to work and sleeping, and maybe some medication if it helps.

If that same person has progressed to become quite slow to move and deconditioned, they’re experiencing allodynia and hyperalgesia, they have a history of migraine and irritable bowel, their sleep is pretty rotten, and they’re avoiding movements that “might” hurt – and their employer is pretty unhappy about them returning to work – then they may need a much more assertive approach, perhaps an intensive pain management programme, a review by a psychiatrist or psychologist, and probably some occupational therapy intervention at work plus a graded exposure to activities so they gain confidence despite pain persisting. Maybe they need medications to quieten the nervous system, perhaps some help with family relationships, and definitely the whole team must be on board with the same model of healthcare.

Some aspects are, I think, missing from this model. I’d like to see more attention paid to family and friends, social and leisure activities, and the person’s own values – because we know that values can be used to help a person be more willing to engage in things that are challenging. And I think the model is entirely deficits-based meaning the strengths a person brings to his or her situation aren’t incorporated.  Of course, too, this model hasn’t been tested in practice – and there are lots of gaps in terms of the measures that can be used to assess each of these domains. But as a heuristic or a template, this model seems to be practical, relatively simple to understand – and might stop us continuing to sub-type back pain on the basis of either psychosocial risk factors or not.

Clinicians pondering this model might now be wondering how to assess each of these domains – the paper provides some useful ideas, and if the framework gains traction, I think many others will add their tuppence-worth to it. I’m curious now to see how people who experience low back pain might view an assessment and management plan based on this: would it be acceptable? Does it help explain some of the difficulties people face? Would it be useful to people living with pain so they can explore the factors that are getting in the way of recovery?

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485

One way of using a biopsychosocial framework in pain management – v


Theories are an important part of scientific development. Theories are essentially a collection of propositions or hypotheses that build a picture of what is in order to predict or control or somehow explain what’s going on. The extent to which a theory’s predictions represent what actually happens, given a set of circumstances, allows us to place more or less faith in the adequacy (or perhaps accuracy) of that theory. The problem with social theory is that there are so many complex interactions between variables that it’s very hard to generate hypotheses that represent what actually goes on in the world – so we end up with skinny theory that explains very little, and in turn this allows naysayers to argue “oh but it isn’t so”.

A biopsychosocial framework is one of those messy, complex theoretical models of “the way people are” that beg for people to argue against it. “It’s too complex”, “it’s too broad”, “it’s too reductionist”, “it’s not clinically useful” – all points against this way of viewing people. Yet, after years of using this model, I still find myself unable to find an alternative way of attempting to understand my two clinical questions: why is this person presenting in this way at this time (and what is maintaining their situation), and what can be done to reduce distress and disability?

Social theories are not something many health professionals are introduced to during their undergraduate training. We’re not trained to understand topics like structure of societies, organisations, groups and everyday lives and how they come about. We don’t typically get trained to think about power and who defines what is normal and abnormal, or who generates names for things – classifications, taxonomies, diagnoses. We rarely get to unpack the hidden discourse of who holds power in healthcare delivery, policy development – even social spending on health.

The people I typically see, living with persistent pain, are often from what posh folks call “the wrong side of the tracks”. Many people don’t have good employment histories. They may not have savings, they may live off a benefit. They are often not well-educated, having left school to do manual work. Their daily routines might be chaotic, and the idea of “keeping fit” or “eating well” doesn’t occur to them because their lives are about getting through the day, loving the family they have, and maybe looking towards a tomorrow where things might be different.

In pain management, we’ve not really spent much time examining the kinds of social relationships or social structures in which the people who really struggle with managing pain come from.  I’m not sure I’ve read very much research exploring, for example, whether people who have two jobs and live on a minimum wage experience greater difficulty developing skills in pacing their activities. I’ve not heard much from the people who live in this way expressing their understanding of what contributes to their distress and disability. I don’t see much about how uncertainty of employment pushes people into unsuitable work – while work is good for most people, what about those minimum wage jobs with unsavoury work environments, precarious employment tenure, cold, wet, smelly and physically demanding jobs with little prospect for the future? I don’t see very much about the effect of someone living on the bare bones of their threadbare trews going to see a medical specialist dressed immaculately in a bespoke suit and silk tie, with the handmade shoes and a language of healthcare that is incomprehensible to anyone other than another similarly clad specialist.

For a sociopsychobiological model of pain (yes, that’s a word, and no I haven’t got it backwards – see this) to gain traction, I think it’s timely to ponder the way our communities view persistent pain. Communities include our own healthcare communities – the manual therapy, physical therapy, occupational therapy, nursing, medical enclaves that use special language and dress in certain ways to demonstrate that we know our stuff. And we need to take a minute to understand the communities the people we hope to help come from.

At the stroke of a keyboard, the labels we give to someone – fibromyalgia, “degenerative changes”, “pre-existing condition”, “depression” – alter the treatment that person receives within healthcare. No question about it – if a person is receiving accident compensation (in NZ it’s ACC) and someone gives that kind of label to them, they’re going to the bottom of the health queue. The vagaries of our system mean that person doesn’t receive work-related rehab, they’re disentitled from ACC, no more weekly compensation, and oh yes they now go through the dehumanising process of attending the “Ministry for Social Development”.

I’m not arguing against the way our ACC legislation is written. And I’m not certain that receiving compensation is always a good thing. What I am pointing out is that when health professionals view the person in front of them as “other” – beneficiary, ACC claimant, pain patient – we are issuing a social declaration. And that means we’re exerting a degree of power over them and their lives. The labels we give have power. And this has a significant impact on the way that person views their pain, and the treatment they may receive.

I think until we begin to include, extend, and invite people living with pain to co-investigate their experience and to contribute to our health professional education (including scientific meetings), we’ll carry on thinking of ourselves as somehow superior to, and certainly more powerful than, the people we hope to treat. Hats off to Rajam Roose for developing the San Diego Pain Summit where this year she’s included a patient panel to give an insight into what it means to hear “your pain is just an output of your brain”. Can we have more please.

What can we do to reduce distress and disability? One thing we can do is begin a conversation about persistent pain being something that anyone can experience. It’s just that people without resources end up dealing with not only pain but also lack of power to change the way it’s treated.

One way of using a biopsychosocial framework in pain management – iv


And yes! There’s more to this series of posts on how I use a biopsychosocial model in practice!

Today’s post is about moving from a conceptual model to a practical model, or how we can use research in our clinical reasoning.

A biopsychosocial model (BPSM) as envisaged by Engel was a framework for clinicians to think about why this person is presenting in this way at this time (and what may be maintaining their situation), as well as what could be done to reduce distress and disability. Engel wanted clinicians to go beyond disease processes, isolated from the people experiencing them, and to explore aspects of how the person coped with everyday challenges (including health), the factors that influenced their decision that their health problem was indeed a problem, and the context of seeking healthcare.  He wanted clinicians to be scientific about how they generated hypotheses which could then be tested in clinical practice, and ultimately confirm or disconfirm the contribution of that factor.

The “bio” aspect of pain (which is a contentious word – I’ll comment in a bit) involves disease processes, trauma, all the biological aspects prior to conscious awareness of the “ouch” we know as pain. Theoretical developments in this area include all the work being conducted in terms of understanding anatomy and physiology of the human body, from molecular study (information transmission from one neurone to another); detailed understanding of spinal cord mechanisms; of the role of glia; of inflammatory processes; of genetic and epigenetic changes; of relationships between blood flow to and from various parts of the brain; of biomechanics; of normal healing processes – and so on. There’s no lack of information being generated by researchers undertaking basic science about the biological mechanisms involved in our experience of pain. Because I typically see people with persistent pain that has been present for maybe 12 months or more (usually much longer than that), I rely on the work of my colleagues to make a good diagnosis. Most people have had more investigation than is probably helpful for them, and I think we can use Clifford Woolf’s broad mechanisms as a reasonable stance when considering an underlying mechanism involved in a person’s pain. Essentially he identifies four main mechanisms: nociceptive, inflammatory, neuropathic and what is now known as “nociplastic” (where the nociceptive system appears to have a problem with processing information).

Yes, we can argue that our current state of understanding is incomplete and there is more to learn, but by working from these basic mechanisms I think we can begin to work on the “bio” part of a biopsychosocial model with a degree of confidence. For my work, anyway, these mechanisms seem to provide a reasonable framework from which the “bio” part of management can begin.

But this is where many clinicians start – and stop. Directly treating, for example, inflammation, certainly provides a reduction in pain – for example, my partner who takes Humera for his ankylosing spondylitis. He no longer experiences inflammatory pain and as his CRP levels reduced, so too did his pain. We can see similar effects when someone has a grotty old hip joint replaced, which removes nociceptive input, ultimately leaving them with a shiny new and painfree hip (in most cases). But as my partner found out, having no pain doesn’t immediately change old habits.

His situation is a nice illustration of the interaction between a disease process which responded really well to a drug that eliminates inflammation, and his beliefs and behaviour which wasn’t changed. Let me explain – once his drug kicked in and he had no pain, he found it odd not to have to think about his pain when climbing hills. It took him about a month or two to fully return to hill climbing in the way he’d done before his anky spond started. That’s right – no pain for a month or two, but that long before he felt confident to go about his activities. And he’s not a man who worries much about his pain!

To add some theory to this, his beliefs (that if he climbed hills a full speed he would inevitably end up with a very sore back) led to him having learned not to go a full pace (through both classical and operant conditioning). We could call this “pain-related fear and avoidance” – or “fear avoidance”. This is one theory that has been extensively researched, and we can integrate the hypotheses generated from this theory into our understanding of why my partner initially had some hesitation about climbing hills. Flowing on from this, we can consider treatments that have been found useful to address his hesitation.

The first treatment could be “explaining pain” to him. Now that wasn’t useful in this case because – oh yeah – his pain had gone! And although he knew his inflammatory pain wasn’t going to harm him (otherwise he’d never have been a high country fire fighter for 20 years despite his anky spond!), he didn’t like the after-effects of aggravating his pain. What helped was addressing his anxiety about the potential for a big flare-up – and this was primarily about beginning at a level that was just beyond his “normal” hill climb, and gradually progressing.

This superficially looks like “exercise” – but it’s exercise with a twist. My partner is as fit as a buck rat. His cardiovascular fitness was fine. Gradually increasing his hill walking wasn’t about increasing fitness – it was about helping him approach an activity that he was a tad concerned might flare his pain up, leading to a rotten night’s sleep (as it had in the past). In fact, this “treatment” was almost all about reducing avoidance by exposing him to things that increased his anxiety just a bit – enough for him to establish that the rotten sleep consequence didn’t happen.

So a biopsychosocial approach to his recovery involved the biological which quickly resolved his pain but left him with some concerns (reasonable ones I think) about pushing himself too hard. Addressing those concerns by taking a theory developed originally from phobia research, applying it to his situation and developing a treatment based on this theory, has led to his return to full participation. Using research-based information to address another part of “why is this person presenting in this way at this time, and what might be maintaining this situation” involves thinking beyond the disease process, and into understanding the problems the person identifies. It means thinking beyond a single discipline. It means reading widely and thinking creatively. That was a good part of Engel’s original proposition.