Assessment

What’s the biggest barrier to learning more?


Reading and engaging with clinicians online and face-to-face, it’s clear to me that effectively integrating psychosocial factors into daily clinical reasoning, especially amongst physical or manual therapists, is a real challenge. There’s enough research around showing how poorly these factors are identified and then factored in to change what we do and how we do it for me to be convinced of this. What intrigues me, though, is why – given psychosocial risk factors have, in NZ, been around since 1997 – it’s still a problem.

It’s not ignorance. It’s not holding an alternative viewpoint. It’s not just that clinical reasoning models don’t seem to integrate these factors, or that our original training kinda partitioned the various “bits” of being human off – I think that it’s probably that we think we’re already doing well enough.

Image result for dunning kruger effect

This effect has a name – Dunning-Kruger effect. Now, don’t be put off by this term, because I know in some social media circles it’s used to bash people who are  maybe naive, or haven’t realised their lack of knowledge, and it can feel really awful to be told “well actually you’re ignorant”, or “you’re inflating your skill level”.  The thing is, it’s a common experience – we all probably think we’re great car drivers – but in reality we’re all pretty average.

The same thing occurs when we consider our ability to be:

  • empathetic
  • responsive
  • good listeners
  • client-centred
  • collaborative

Another important effect found in clinicians is that we believe our experience as clinicians means we’re better at aspects of clinical care, and especially at clinical reasoning. Over time we get better at recognising patterns – but this can actually be a problem for us. Humans are excellent at detecting patterns but as a result we can jump to conclusions, have trouble stopping ourselves from fixating on the first conclusion we draw, begin looking for things to confirm our hunch, overlook things that don’t fit with the pattern we’ve identified, and basically we begin to use stereotypes rather than really looking at the unique person sitting in front of us (see Croskerry, Singhal & Mamede, 2013a, b).

The effect of these biases, and especially our bias towards thinking we do better than we actually do (especially regarding communication skills and psychosocial factors) means we’re often completely unaware of HOW we communicate, and HOW poorly we pick up on psychosocial factors.

So often I’ve heard people say “Oh I use intuition, I just pick up on these psychosocial issues” – but the problem is that (a) we’re likely to over-estimate how well we pick up on them and (b) our intuition is poor. The risk for our patients is that we don’t identify something important, or alternatively, that we label something as a psychosocial risk factor when it’s actually irrelevant to this person’s problem.

Clinical reasoning is difficult. While recognising patterns becomes easier over time because we have a far broader range of patterns we’ve seen before, at the same time

  • research is expanding all the time (we can be out of date)
  • we can get stuck prematurely identifying something that isn’t relevant
  • we get hooked in on things we’ve just read about, things that happen rarely, things that remind us of something or someone else

Hypothetico-deductive reasoning is an alternative approach to clinical reasoning. It’s an approach that suggests we hold some ideas about what’s going on in our mind while collecting more information to test whether this is the case. The problem here is that we look for information to confirm what we think is happening – rather than looking for something to disconfirm, or test, the hypothesis we hold. So, for example, we might observe someone’s pain behaviour and think to ourselves “oh that person is doing that movement because of a ‘dysfunctional movement pattern’. We can assume that the reason for this movement pattern is because of underlying dysfunction of some sort – but we fail to test that assumption out to see whether it might in fact be a movement pattern developed because someone told the person “this is the way you should move”, or the person is moving that way because of their beliefs about what might happen if they move differently.

The problem with intuition and these other cognitive biases is that they simplify our clinical reasoning, and they reduce effort, so they’re easy traps to fall into. What seems to help is slowing down. Deliberately putting a delay in between collecting information and making a decision. Holding off before deciding what to do. Concurrently, we probably need to rely less on finding “confirming” information – and FAR more on collecting information across a range of domains, some of which we may not think are relevant.

That’s the tough bit. What we think is relevant helps us narrow down our thinking – great for reducing the amount of information we need to collect, but not so great for testing whether we’ve arrived at a reasonable conclusion. My suggested alternative is to systematically collect information across all the relevant domains of knowledge (based on what’s been found in our research), wait a bit and let it settle – then and only then begin to put those bits and pieces together.

Why doesn’t it happen? Well, we over-estimate how well we do this assessment process. We do jump to conclusions and sometimes we’re right – but we wouldn’t know whether we were right or not because we don’t check out alternative explanations. We’re pushed by expectations from funders – and our clients – to “set goals” or “do something” at the very first assessment. We feel guilty if we don’t give our clients something to take away after our initial assessment. We want to look effective and efficient.

Great quote?

For every problem, there is a solution that is simple, elegant, and wrong. H.L. Mencken.

If you’d like to question your own practice, try this: Record your session – and transcribe that recording. Notice every time you jump in to give advice before you’ve really heard your client. Notice how quickly you form an impression. Examine how often you look for disconfirmation rather than confirmation. See how often you ask about, and explore, those psychosocial factors. It’s tough to do – and sobering – but oh how much you’ll learn.

Croskerry, P., Singhal, G., & Mamede, S. (2013). Cognitive debiasing 1: origins of bias and theory of debiasing. BMJ Quality & Safety, 22(Suppl 2), ii58-ii64. doi:10.1136/bmjqs-2012-001712

Croskerry, P., Singhal, G., & Mamede, S. (2013). Cognitive debiasing 2: impediments to and strategies for change. BMJ Quality & Safety, 22(Suppl 2), ii65-ii72. doi:10.1136/bmjqs-2012-001713

Advertisements

The gap in managing pain


If you’ve read my blog for any period of time you’ll know that I like practical research, and research that helps clinicians do what they do with humanity, compassion and evidence. One really enormous gap in the field is rarely mentioned: how do clinicians pull their assessment findings together and use them for clinical reasoning? Especially if you’re part of an interprofessional team (or work in a biopsychosocial framework). The silence in the pain literature is deafening!

There are any number of articles on what can be included in an initial assessment, most of them based on the idea that if factor X is an important predictor, it oughta be assessed. So we have a proliferation of assessments across (mainly) the biopsychological spectrum, with a teeny tiny bit of social (family relationships) thrown in, if you’re lucky. There are numerous papers proposing treatments for aspects of pain – anything from medications, to movement treatments, to cognitive treatments (yes, pain education), and behavioural treatments – but after reading them it almost feels like authors think anyone with pain that’s going on longer than we’d hope “should” have That Treatment, and then of course the person will be just fine.

Except that – there are just as many people with persistent pain today as there were 20 years ago, perhaps more (given the global burden of disease shows that low back pain is The Most Common problem associated with years lived with disability). In other words, all our treatments across all our specialties don’t seem to be having the impact that the research papers suggest they ought to. What gives?

I think it’s time to take a leaf from some of the better-conducted pharmacological studies. Yes, I said that! What I mean is that given our treatments especially for low back pain seem to have broadly the same or similar effects, maybe we need to look beyond the grouped analyses where individual differences are lost within the grouped data, and head to some of the sub-analyses proposed and used by Moore, Derry, Eccleston & Kalso (2013). In this paper, they advocate using responder analysis – who, exactly, gets a good result?

At the same time, I think we need to get much better at assembling, integrating and using the multitude of assessments people complete for us when we start treating them. Several points here: yes, we all carry out assessment but how well do we put them together to “tell the story” or generate a set of hypotheses to explain the crucial questions:

Why is this person presenting in this way at this time? And what can be done to reduce distress and disability?

I think case formulations may take us a step towards better use of our assessments, better clinical reasoning, better teamwork, and, most of all, better collaboration with the person we hope to help.

Case formulations are not new in psychology. They’re really a cornerstone of clinical psychological reasoning – assembling the information gathered during assessment into some sort of explanatory framework that will help the therapist generate possibly hypotheses about predisposing factors, what precipitated the problem, what perpetuates the problem, and any protective factors. Psychologists are no less prone to arguing about whether this approach works than anyone else – except they do some cool studies looking at whether they’re consistent when generating their formulations, and sadly, formulations are not super-consistent with each other (Ridley, Jeffrey & Robertson, 2017).

BUT here’s why I think it might be a useful approach, especially for people with complex problems associated with their pain:

  1. Case formulations slow our clinical reasoning down. “Huh?” you say, “Why would that be good?” Well because rapid clinical judgements on the basis of incomplete information tend to lead us towards some important cognitive biases – anchoring on the first possible idea, discounting information that doesn’t fit with that idea, we notice weird stuff more than the commonplace, we fill in information based on stereotypes, generalities and past histories, and we don’t shift from our first conclusion very easily. By taking time to assemble our information, we can delay drawing a conclusion until we have more information.
  2. By completing a consistent set of assessments (instead of choosing an ad hoc set based on “the subjective”) we reduce the tendency to look for confirmation of our initial hunch. I know this isn’t usual practice in some professions because that “subjective” history is used to guide assessments which are then used to determine a diagnosis – but the risk is that we’ll look for assessments that confirm our suspicions, meanwhile being blinded to possible alternative explanations (or hypotheses or diagnoses).
  3. Working together with the expert on their own situation (ie the person seeking help!) we build collaboration, a shared understanding of the person’s situation, and we can develop an effective working relationship without any hint of “one-up, one-down” that I can see appeals to “experts” who like to point out the “problems” with, for example, posture, gait, motor control and so on – all which may have little to do with the patient’s pain, and a whole lot more to do with creating a “listen to me because I Know Things” situation.
  4. Other team members can contribute their assessments, creating a common understanding of the various factors associated with the person’s situation. Common goals can be developed, common language about what might be going on, common treatment aims and enhanced understanding of what each profession contributes can happen when a formulation includes all the wonderful information collected across the team.
  5. If one of the treatments doesn’t work (ie the hypothesis doesn’t hold up to testing) there are other options to draw on – we’re not stuck within our own clinical repertoire, we can think across disciplines and across individual clinical models and become far more confident about knowing when to refer on, and how we can support our colleagues.

But, you know, I looked in the pain journals, searched far and wide – and I found few examples of case formulation for persistent pain. The best paper I’ve found so far is from a textbook – so not readily accessible. It’s Linton & Nicholas (2008) “After assessment, then what? Integrating findings for successful case formulation and treatment tailoring”. Where is the rest of the research?!!

Linton, S. J., & Nicholas, M. K. (2008). After assessment, then what? Integrating findings for successful case formulation and treatment tailoring. Clinical Pain Management Second Edition: Practice and Procedures, 4, 1095.

Moore, A., Derry, S., Eccleston, C., & Kalso, E. (2013). Expect analgesic failure; pursue analgesic success. BMJ: British Medical Journal (Online), 346.

Ridley, C. R., Jeffrey, C. E. and Roberson, R. B. (2017), Case Mis-Conceptualization in Psychological Treatment: An Enduring Clinical Problem. J. Clin. Psychol., 73: 359–375. doi:10.1002/jclp.22354

Knee pain – and central sensitisation


Last week I started to discuss central sensitisation indicators in people with osteoarthritic knees, based on a paper by Lluch, Nijs, Courtney, Rebbeck, Wylde & Baert, et al (2017). I’m going to continue with this topic this week, because with the rise of osteoarthritis in the general population and particularly the impact of an aging population, I think we will all need to think hard about how we conceptualise osteoarthritis, and what we do for management. While efforts within my own Department (CReaTE – tissue engineering) involve developing new ways to remodel knee-joint tissues, we know that it will be some years before this approach is widely available (human trials haven’t started yet), and given the relative lack of funding for joint replacements, I think developing effective assessment and rehabilitation for painful knees is a real area of development.

So last week I discussed using simple measures such as >5 on a 0 – 10 VAS (NRS), pain drawings/maps showing radiating pain or widely distributed pain, the pattern of pain fluctuation (during activity, with an increase after activity), and using a couple of fairly simple questionnaires to help identify those most likely experiencing more than the “simple” OA pain we’ve learned about. And as always, identifying psychosocial factors which can lead to increased disability and distress is important.

Along with the clinical interview, we usually incorporate physical examination or physical performance testing. There are some indicators that might be useful such as inconsistent responses to our usual physical examination (ie testing increases pain even though some of them shouldn’t do so) – this should not be interpreted as a sign that the person is “faking bad” or exaggerating their experience. I can’t emphasise this enough! It’s possible that anxiety on the part of a person can wind the nervous system up – leading to what is usually non-nociceptive input being interpreted as nociceptive (Courtney, Kavchak, Lowry et al, 2010).

Another indicator is the presence of widespread hypersensitivity to mechanical stimuli – it’s a common finding in people who have central sensitisation and includes increased response to pressure and touch. You could, as a clinician, use a pressure algometer both close to the knee, and further away, to establish over-excitability of the nociceptive pathways. Interpreting findings using pressure algometry is not straightforward because there is overlap between those with OA and those without, but it’s possible to use norms from the general population (such as Nesiri, Scaramozzino, Andersen et al, 2011). It’s a bit of a challenge because of the overlap between the two populations, but can add to the clinical picture. Pain (allodynia) on light touch or being stroked with a cottonwool ball around the knee, is definitely a clue that something’s up.

Both thermal hyperalgesia and tactile hypoaesthesia (reduced sensitivity to von Frey fibre testing) have been associated with central sensitisation – if you don’t have formal testing apparatus, the back of a warmed teaspoon placed on the skin for 10 seconds should be experienced as hot but not painful in someone who isn’t tending to central sensitisation, and you can use cottonbuds (or cottonwool) to identify loss of sensation acuity, provided you do so in a systematic way (the authors suggest starting where it’s most painful and stimulating the skin in a wheel spoke pattern, gradually widening out).

Putting it all together

Any single test, on its own, is unlikely to be a good predictor of central sensitisation, but when combined with the information you obtain from the person, along with the relevant questionnaires, should begin to help develop a picture of who is likely to have a less-than-ideal response to planned trauma. What we do about reducing the potential for central sensitisation is still  begin hotly debated but we DO know that giving good information about pain mechanisms, and encouraging graded exposure and graded activity can be helpful. Given that exercise is a good approach for reducing the impact of osteoarthritis in the knee, for those with the additional burden of central sensitisation, I think swimming or hydrotherapy could also be helpful, as could mindfulness and even mindful movement like tai chi, yoga or xi gong.

Conclusion

People living with OA in their knees often spend many years having difficulty managing their pain before they are able to have surgery. From recent research in New Zealand, I don’t think many people are offered a pain “education” approach, and indeed, I’d bet there are a lot of people who don’t get referred for movement-based therapy either. Misunderstanding is rife in OA, with some people uncertain of the difference between osteoarthritis and rheumatoid arthritis, and others very worried that they’re going to “wear the joint out” if they exercise. While OA isn’t as sexy as low back pain, doesn’t have the economic cost of low back pain, and has a reasonable surgical option – it is still a significant problem for many people. Helping those people be more confident to move, helping reduce their uncertainty about the effect of movement on their joints, and giving them an opportunity to think differently about their knee pain would be a real step forward. Surgery, while helpful for many, is either not available or unsuccessful for others, and it’s time we attended to their needs as well.

 

Courtney CA, Kavchak AE, Lowry CD, et al. (2010). Interpreting joint pain: quantitative sensory testing in musculoskeletal management. Journal of Orthopaedic Sports Physical Therapy. 40:818–825.

Lluch Girbes E, Meeus M, Baert I, et al. (2015) Balancing “hands-on” with “hands-off” physical therapy interventions for the treatment of central sensitization pain in osteoarthritis. Manual Therapy. 20:349–352.

Lluch, E., Nijs, J., Courtney, C. A., Rebbeck, T., Wylde, V., Baert, I., . . . Skou, S. T. (2017). Clinical descriptors for the recognition of central sensitization pain in patients with knee osteoarthritis. Disability and Rehabilitation, 1-10. doi:10.1080/09638288.2017.1358770

Neziri AY, Scaramozzino P, Andersen OK, et al. (2011). Reference values of mechanical and thermal pain tests in a pain-free population. European Journal of Pain. 15:376–383.

Knee pain – not just a simple case of osteoarthritis


Knee osteoarthritis is, like so many chronic pain problems, a bit of a weird one. While most of us learned that osteoarthritis is a fairly benign disease, one that we can’t do a whole lot about but one that plagues many of us, the disability associated with a painful knee is pretty high – and we still don’t have much of a clue about how the pain we experience is actually generated.  Cartilage doesn’t have nociceptive fibres, yet deterioration of cartilage is the hallmark of osteoarthritis, though there are other structures capable of producing nociceptive input around the knee joint. Perhaps, as some authors argue, knee osteoarthritis is a “whole organ disease with a complex and multifactorial pathophysiology involving structural, psychosocial and neurophysiological factors” (Arendt-Nielsen, Skou, Nielsen et al, 2015).

Central sensitisation, or the process in which spinal cord and the brain become “wound up” or more responsive to input than normal, and seems to be a factor in the pain some people experience when they have osteoarthritic knees (Fingleton, Smart, Moloney et al, 2015; Finan, Buenaver, Bounds, Hussain, Park, Haque et al, 2013), particularly in women (Bartley, King, Sibille, et al, 2016). The problem is, few people are routinely screened for central sensitisation before they receive surgical treatment (a good question is whether pain-related research is a factor in orthopaedic assessment). Why should we think about screening? Well, outcomes for joint replacements in knee OA are not as good as they are for hip OA, and a good proportion of people have more than one surgery to attempt to revise the joint but ultimately don’t obtain a satisfactory resolution of their pain.

The authors of this very useful clinically-relevant paper “Clinical descriptors for the recognition of central sensitization pain in patients with knee osteoarthritis” (Lluch, Nijs, Courtney, Rebbeck, Wylde, Baert, Wideman, Howells and Skou, 2017) openly acknowledge that although the idea of central sensitisation in humans is appealing, and seems to answer a number of important questions, the actual term “central sensitisation” can, at this time, only be measured in animal models. The use of the term in humans is not yet agreed upon, and a term I find appealing is “nociplastic”, or in other words, plasticity of the nervous system underpinning an increase in responsiveness to “actual or potential tissue damage” (to quote from the IASP definition of pain). They argue that central sensitisation may not exist in a dichotomous “yes you have it” or “no you don’t”, but instead may from a continuum from a lot to a little, and they note that pain sensitivity also exists on a continuum (a bell-shaped curve).

So what’s a good clinician to do? We can’t all go out and get involved in conditioned pain modulation or in using brain imaging, yet it seems important to establish who might respond well to joint replacement vs who might need additional input so they get a good outcome. And something that’s not going to add too much expense or complexity to an assessment process that, at least in New Zealand, is rationed because of cost. (oops, sorry not “rationed” just “waitlist management”).

The first step as described by Lluch and colleagues involves the “subjective” assessment – I loathe the word “subjective” because this is the person’s own experience, and doesn’t need to be tainted with any suggestion that it’s inaccurate or can’t be trusted. ‘Nuff said. During an interview portion of an assessment, the authors suggest using some simple measures: reports of pain above 5/10 on a numeric rating scale where 0 – no pain, 10 – extreme pain. They add increased weight to this report if there is little significant found on simple imaging of the knee, because central sensitisation is thought to be less relevant where there is severe structural changes in the knee joint.

A pain drawing can be helpful – radiating pain, pain on the contralateral leg, and pain in other body sites can be an indication of central sensitisation, while pain that is localised just to the joint itself may be an indication that a surgical approach will be more likely to help. Using the Widespread Pain Index score >7 and painDETECT score >19 (seeVisser, et al, 2016) may be a relatively simple process for clinicians to use to identify those with troublesome pain.

The behaviour of pain with/without movement may be a useful indicator: those that find movement painful, or who report increased pain after engaging in physical activity might be responding to central sensitisation, given that OA pain is usually associated with rest. Add to this a discussion about what relieves the pain and what doesn’t (where easing up on mechanical demands should reduce pain while with central sensitisation, this may not occur), and those with pain that continues after movement may need more help with central sensitisation than those who don’t.

The authors also suggest two questionnaires that may help to spot the person experiencing central sensitisation – the painDETECT or the Central Sensitisation Inventory. At this point I’m not entirely certain that the CSI measures only central sensitisation (it may simply measure somatic attention, or distress), so I’d interpret the findings carefully and make sure the clinical picture confirms or doesn’t… while the painDETECT has been used to identify those with neuropathic pain, and may be appropriate though it hasn’t been strongly confirmed for use with knee OA (it was developed for low back pain). While you’re at it, you should also assess for psychosocial factors such as the tendency to think the worse, low mood, feeling helpless, and perhaps factors such as not liking your job, having limited family support, and maybe self-medicating with alcohol and tobacco or other substances.

Finally, for today’s post (yes I’ll carry on to the clinical tests next week!), response to pharmacology may also be a useful approach to identifying those with central sensitisation. Poor response to NSAIDs (the mainstay for knee OA in NZ), weak opioids (like codeine), and perhaps not responding to things like heat or joint mobilisation, may also be useful predictors.

In summary, there are numerous indicators one can use to help establish who might not respond well to a peripheral-only treatment. While some of these measures are used routinely by enlightened clinicians, there are plenty of people who think of these responses as an indication of “poor coping” or someone who REALLY needs surgery. Unless surgeons and those who work with people with knee OA begin to examine the literature on pain in knee OA, I think we’ll continue to have patients who receive surgery when perhaps it’s not the best thing for them. More on this next week.

 

 

 

Arendt-Nielsen L, Skou ST, Nielsen TA, et al. (2015). Altered central sensitization and pain modulation in the CNS in chronic joint pain. Current Osteoporosis Reports, 13:225–234.

Bartley EJ, King CD, Sibille KT, et al. (2016) Enhanced pain sensitivity among individuals with symptomatic knee osteoarthritis: potential sex differences in central sensitization. Arthritis Care Research (Hoboken). ;68:472–480.

Finan PH, Buenaver LF, Bounds SC, Hussain S, Park RJ, Haque UJ, et al. (2013). Discordance between pain and radiographic severity in knee osteoarthritis: findings from quantitative sensory testing of central sensitization.  Arthritis & Rheumatism, 65, 363-72. doi:10.1002/art.34646

Fingleton C, Smart K, Moloney N, et al. (2015). Pain sensitization in people with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and Cartilage, 23:1043–1056.

Kim SH, Yoon KB, Yoon DM, Yoo JH & Ahn KR. (2015). Influence of Centrally Mediated Symptoms on Postoperative Pain in Osteoarthritis Patients Undergoing Total Knee Arthroplasty: A Prospective Observational Evaluation.  Pain Practice, 15, E46-53. doi:10.1111/papr.12311

Lluch, E., Nijs, J., Courtney, C. A., Rebbeck, T., Wylde, V., Baert, I., . . . Skou, S. T. (2017). Clinical descriptors for the recognition of central sensitization pain in patients with knee osteoarthritis. Disability and Rehabilitation, 1-10. doi:10.1080/09638288.2017.1358770

Visser EJ, Ramachenderan J, Davies SJ, et al. (2016). Chronic widespread pain drawn on a body diagram is a screening tool for increased pain sensitization, psycho-social load, and utilization of pain management strategies. Pain Practice, 16, 31-37

Pacing, pacing, pacing – good, bad, or…?


There’s nothing that pain peeps seem to like more than a good dispute over whether something is good, or not so good for treatment. Pacing is a perennial topic for this kind of vexed discussion. Advocates say “But look at what it does for me! I can do more without getting my pain out of control!” Those not quite as convinced say “But look at how little you’re doing, and you keep letting pain get in the way of what you really want to do!”

Defining and measuring pacing is just as vexed as deciding whether it’s a good thing or not. Pacing isn’t well-defined and there are several definitions to hand. The paper I’m discussing today identifies five themes of pacing, and based this on Delphi technique followed by a psychometric study to ensure the items make sense. The three aspects of pacing are: activity adjustment, activity consistency, activity progression, activity planning and activity acceptance.

Activity adjustment is about adjusting how we go about doing things – approaches like breaking a task down, using rest breaks, and alternating activities.

Activity consistency is about undertaking a consistent amount of activity each day – the “do no more on good days, do no less on bad” approach.

Activity progression refers to gradually increasing activities that have been avoided in the past, as well as gradually increasing the time spent on each task.

Activity planning involves setting activity levels, setting time limits to avoid “over-doing”, and setting meaningful goals.

Finally, activity acceptance is about accepting what can be done, and what can’t, setting realistic goals, adapting targets, and being able to say no to some activities.

In terms of covering the scope of “activity pacing”, I think these five factors look pretty good – capturing both the lay sense of pacing, as well as some of the ideas about consistency and progression.

On to the study itself, conducted by Deborah Antcliffe, Malcolm Campbell, Steve Woby and Philip Keeley from Manchester and Huddersfield.  Participants in this study were attending physiotherapy through the NHS (yay for socialised healthcare! – Let’s keep that way, shall we?!), and had diagnoses of chronic low back pain, chronic widespread pain, fibromyalgia and chronic fatigue syndrome.  They completed the questionnaire either while on a waiting list, or after completing treatment, as a way to generalise findings – so this isn’t a measure of change (at least, not at this point).

Along with the APQ (the Activity Pacing Questionnaire – original name huh?!), participants completed a numeric rating scale, the Chalder Fatigue Questionnaire, Hospital Anxiety and Depression Scale, Pain Anxiety Symptoms Scale, and the Short-Form 12.  Some lovely number crunching was used – hierarchicial (sequential) multiple regression models with five separate multiple regression models of the symptoms of current pain, physical fatigue, depression, avoidance and physical functioning.

One of the confusing problems with  measuring pacing is that people may vary their use of different forms of pacing, depending on their symptoms at the time. So in this analysis, factors like pain and fatigue could be a dependent variable (ie I use pacing techniques and feel less fatigued and I’m in less pain), or they could be a confounding variable (ie I feel sore and tired, so I use these techniques).  Needless to say, the statistical analysis is complex and I don’t have a hope of explaining it!

The results, however, are very intriguing. 257 people completed the questionnaires in full, from an overall number of 311 participants. About half had completed their physiotherapy, while the other half had yet to start (ie waiting list). As usual, more people with low back pain than other conditions, and 2/3 were female. On first pass through the data, to establish correlations for inclusion in the regression  models (did your eyes just glaze over?!), the findings showed activity adjustment was associated with higher levels of current pain, depression, and avoidance, and lower levels of physical function. Activity consistency was associated with lower levels of physical fatigue, depression, and avoidance. and higher levels of physical function. Activity progression was associated with higher levels of current pain. Activity planning was significantly associated with lower levels of physical fatigue, and activity acceptance was associated with higher levels of current pain and avoidance.

Then things changed. As these researchers began adjusting for other independent variables, the patterns changed – Activity adjustment was significantly associated with higher levels of depression and avoidance and lower levels of physical function as before, but after adjustment, the association with pain was no longer significant; instead, it was significantly related to higher levels of physical fatigue. Activity consistency remained significantly associated with lower levels of physical fatigue, depression, and avoidance, and higher levels of physical function, but became significantly associated with lower levels of current pain. There were now no significant partial correlations between activity progression and any of the symptoms, whereas activity planning retained its significant association with lower levels of physical fatigue. Activity acceptance lost its significant association with current pain but retained its significant association with higher levels of avoidance.

Ok, Ok, what does that all mean? Firstly – engrave this on your forehead “Correlation does not mean causation”! What seems to be the case is that different themes or forms of pacing are associated with different symptoms. The items associated with adjusting or limiting activities were generally associated with more symptoms. So the more pain and fatigue a person experiences, it seems the more likely it is for them to choose to limit or adjust how much they do. Pacing themes involving consistency and planning were associated with improved symptoms. Using path analysis, the authors identify that activity adjustment and activity consistency play the most important parts in the relationship  between pacing and symptoms.

The take-home messages from this study are these:

  • We can’t define pacing as a unidimensional process – it seems clear to me that different people describe pacing in different ways, and that this messy definitional complexity makes current studies into the use of pacing rather challenging.
  • It seems that avoiding activities, reducing activities in response to pain or fatigue – the idea of an “envelope” of time/energy that needs to be managed to get through the day – is associated with more severe symptoms. Whether people choose this approach only when their symptoms are severe, and revert to activity adjustment and consistency when in less discomfort is not clear (correlation does not equal causation!)
  • Planning activities seems to be associated with some improved symptoms and the authors suggest that planning activities in advance might help people avoid a “boom and bust” scenario. giving a better shape to the day, a greater sense of control and achievement. Then again, it could be that when people feel better, they’re more able to plan their day, and again this study doesn’t help us much.
  • Activity progression, where the overall amount of activity gradually increases over time, wasn’t associated with either more or less pain and fatigue. I think it’s time we had a good look at whether progression helps people – or doesn’t. Rehabilitation philosophy suggests that it “should” – but do we know?
  • And finally, activity consistency was the aspect of pacing that was associated with improved symptoms – and this is certainly something I’ve found true in my own pain management.

The authors maintain that describing pacing as a multi-faceted construct is the only way forward – clearly we’re not going to agree that “pacing is X” when five different forms of pacing were derived from the Delphi study on which the APQ is based. It seems to me that we could benefit from applying this kind of nuanced definition in more areas than just pacing in pain management!

Antcliff, D., Campbell, M., Woby, S., & Keeley, P. (2017). Activity pacing is associated with better and worse symptoms for patients with long-term conditions. The Clinical Journal of Pain, 33(3), 205-214. doi:10.1097/ajp.0000000000000401

Targeting the people who need it most


A couple of things came to mind today as I thought about this post: the first was an article in the local newspaper about a man complaining that the government is “promoting disability” because he couldn’t get surgery for a disc prolapse – and the pain was affecting his ability to work. The second was how to direct the right treatment at the right person at the right time – and how we can be derailed by either wholesale over-servicing “everyone needs treatment X”, or by overburdening people with assessment just to give a fairly basic treatment.

Now with the first man, I don’t know his clinical situation – what I do know is that there are many people every day who must learn to live with their pain because there simply is not an effective treatment of any kind, and that amongst these people are those go on to live wonderful lives despite their pain. I wonder if this man has ever been offered comprehensive self management for while he waits for his surgery. Whether the government could spread some funding away from surgery as the primary option for such pain problems – and instead provide better funding for the wider range of approaches offered through the interdisciplinary pain management centres (approaches which include injection procedures, physiotherapy, psychology, occupational therapy and medications). When there is an effective treatment (and this is arguable in the case of disc prolapse – in fact, it’s difficult to know whether even MRI imaging can give a clear indication of who might respond best to what treatment (Steffens, Hancock, Pereira et al, 2016), we should be able to give it, provided it fits within our country’s health budget. Ahh – that’s the problem, isn’t it… expensive treatments mean fewer people can get basic treatment. And with lumbar disc prolapse, the evidence for surgery is less favourable than many people recognise (Deyo & Mirza, 2016) – they state:

“Patients with severe or progressive neurologic deficits require a referral for surgery. Elective surgery is an option for patients with congruent clinical and MRI findings and a condition that does not improve within 6 weeks. The major benefit of surgery is relief of sciatica that is faster than relief with conservative treatment, but results of early surgical and prolonged conservative treatment tend to be similar at 1 year of follow-up. Patients and physicians should share in decision making.”

So here we have a person with lots of pain, experiencing a great deal of distress, and reducing his work because of pain and disability. My question now (and not for this person in particular) is whether being distressed is equivalent to needing psychological help. How would we know?

There’s been a tendency in pain management to bring in psychologists to help people in this kind of situation. Sometimes people being referred for such help feel aggrieved: “My problem isn’t psychological!” they say, and they’re quite correct. But having a problem that isn’t psychological doesn’t mean some psychological help can’t be useful – unless by doing so, we deny people who have serious psychological health problems from being seen. And in New Zealand there are incredible shortages in mental health service delivery – in Christchurch alone we’ve had an increase in use of mental health services of more than 60% over the past six years since the massive 2010/2011 earthquakes (The Press).

People living with persistent pain often do experience depression, anxiety, poor sleep, challenges to relationships and in general, feeling demoralised and frustrated.  In a recent study of those attending a specialist pain management centre, 60% met criteria for “probable depression” while 33.8% met criteria for “severe depression” (Rayner, Hotopf, Petkova, Matcham, Simpson & McCracken, 2016). BUT that’s 40% who don’t – and it’s my belief that providing psychological services to this group is allocating resources away from people who really need it.

So, what do we do? Well one step forward might be to use effective screening tools to establish who has a serious psychological need and who may respond just as well to reactivation and return to usual activities with the support of the less expensive (but no less skilled) occupational therapy and physiotherapy teams. Vaegter, Handberg, & Kent (in press) have just published a study showing that brief psychological screening measures can be useful for ruling out those with psychological conditions. While we would never use just a questionnaire for diagnosis, when combined with clinical assessment and interview, brief forms of questionnaires can be really helpful for establishing risk and areas for further assessment. This study provides some support for using single item questions to identify those who need more in-depth assessment, and those who don’t need this level of attention. I like that! The idea that we can triage those who probably don’t need the whole toolbox hurled at them is a great idea.

Perhaps the New Zealand politicians, as they begin the downhill towards general elections at the end of the year, could be asked to thoughtfully consider rational distribution of healthcare, and a greater emphasis on targeted use of allied health and expensive surgery.

 

Deyo, R. A., & Mirza, S. K. (2016). Herniated Lumbar Intervertebral Disk. New England Journal of Medicine, 374(18), 1763-1772.

Hahne, A. J., Ford, J. J., & McMeeken, J. M. (2010). Conservative management of lumbar disc herniation with associated radiculopathy: A systematic review. Spine, 35(11), E488-504.

Koffel, E., Kroenke, K., Bair, M. J., Leverty, D., Polusny, M. A., & Krebs, E. E. (2016). The bidirectional relationship between sleep complaints and pain: Analysis of data from a randomized trial. Health Psychology, 35(1), 41-49.

Rayner L, Hotopf M, Petkova H, Matcham F, Simpson A, McCracken LM. Depression in patients with chronic pain attending a specialised pain treatment centre: prevalence and impact on health care costs. Pain. 2016;157(7):1472-1479. doi:10.1097/j.pain.0000000000000542

Steffens, D., Hancock, M.J., Pereira, L.S. et al.(2016) Do MRI findings identify patients with low back pain or sciatica who respond better to particular interventions? A systematic review. European Spine Journal 25: 1170. doi:10.1007/s00586-015-4195-4

Vaegter, H. B. P., Handberg, G. M. D., & Kent, P. P. Brief psychological screening questions can be useful for ruling out psychological conditions in patients with chronic pain. Clinical Journal of Pain.

The “Subjective” – and really hearing


I’m not a physiotherapist. This means I don’t follow the SOAP format because it doesn’t suit me. The first letter is intended to represent “subjective” – and when I look up the dictionary meaning of subjective and compare it with the way “subjective” notes are thought about, I think we have a problem, Houston.

Subjective is meant to mean “based on personal feelings” or more generally “what the person says”. In the case of our experience of pain, we only have our personal feelings to go on. That is, we can’t use an image or X-ray or fMRI or blood test to decide whether someone is or isn’t experiencing pain.

Now the reason I don’t like the term “subjective” when it’s part of a clinical examination is that so often we contrast this section with so-called “objective” findings.  Objective is meant to mean “not influenced by personal feelings”, and is intended to represent “facts” or “the truth”. Problem is… how we determine truth.

Let’s think about how the information we obtain fits with these two ideals, and how we use it.

Subjective information is all the things we ask a person about – their thoughts, beliefs, feelings, understanding and their own experience. Subjective information might even include the person’s report of what they can and can’t do, how they feel about this and what their goals are.

Objective information, on the other hand, is all the things we as clinicians observe and measure. Now here’s my problem. By calling this information “objective” we’re indicating that we as clinicians hold a less-than-subjective view of what we see. Now is that true? Let’s think about the tests we use (reliability, validity anyone?). Think about the choices we make when selecting those tests (personal bias, training variability, clinical model…). Think about the performance variables on the day we do the testing (time of day, equipment and instruction variability, observational awareness, distractions, recording – oh and interpretation).

Now think about how that information is used. What value is placed on the objective information? It’s like a record of what actually was at the time. If you don’t believe me, take a look at what’s reported in medico-legal reporting – and what gets taken notice of. The subjective information is often either overlooked – or used to justify that the client is wrong, and what they can actually do is contained in the “objective”.

Given the predictive validity of a person’s expectations, beliefs and understanding on their pain and disability over time, I think the label “subjective” needs an overhaul. I think it’s far more accurate to call this “Personal experience”, or to remove the two labels completely and call it “assessment”. Let’s not value our own world view over that of the people we are listening to.

How do we really hear what someone’s saying? Well, that’s a hard one but I think it begins with an attitude. That attitude is one of curiosity. You see, I don’t believe that people deliberately make dumb decisions. I think people make the best decisions they can, given the information they have at the time. The choices a person makes are usually based on anticipating the results and believing that this option will work out, at least once. So, for example, if someone finds that bending forwards hurts – doesn’t it make sense not to bend over if you’re worried that (a) it’s going to hurt and (b) something dire is happening to make it hurt? In the short term, at least, it does make sense – but over time, the results are less useful.

Our job, as clinicians, is to find out the basis for this behaviour, and to help the person consider some alternatives. I think one of the best ways to do this is to use guided discovery, or Socratic questioning to help both me and the client work out why they’ve ended up doing something that isn’t working out so well now, in the long term. I recorded a video for the Facebook group Trust Me, I’m a Physiotherapist (go here for the video) where I talk about Socratic questioning and Motivational Interviewing – the idea is to really respect the person’s own experience, and to guide him or her to discover something about that experience that perhaps they hadn’t noticed before. To shed a little light on an assumption, or to check out the experience in light of new knowledge.

Learning Socratic questioning can be tricky at first (Waltman, Hall, McFarr, Beck & Creed, 2017). We’re not usually trained to ask questions unless we already know the answer and where we’re going with it. We’re also used to telling people things rather than guiding them to discover for themselves. Video recording can be a useful approach (see Gonsalvez, Brockman & Hill, 2016) for more information on two techniques. It’s one of the most powerful ways to learn about what you’re actually doing in-session (and it’s a bit ewwww at first too!).

We also really need to watch that we’re not guiding the person to discover what we THINK is going on, rather than being prepared to be led by the client as, together, we make sense of their experience. It does take a little time, and it does mean we go at the pace of the person – and we have to work hard at reflecting back what it is we hear.

So, “subjective” information needs, I think, to be valued far more highly than it is. It needs to be integrated into our clinical reasoning – what the person says and what we discover together should influence how we work in therapy. And we might need to place a little less reliance on “objective” information, because it’s filtered through our own perspective (and other people may take it more seriously than they should).

 

Gonsalvez, C. J., Brockman, R., & Hill, H. R. (2016). Video feedback in CBT supervision: review and illustration of two specific techniques. Cognitive Behaviour Therapist, 9.
Kazantzis, N., Fairburn, C. G., Padesky, C. A., Reinecke, M., & Teesson, M. (2014). Unresolved issues regarding the research and practice of cognitive behavior therapy: The case of guided discovery using Socratic questioning. Behaviour Change, 31(01), 1-17.
Waltman, S., Hall, B. C., McFarr, L. M., Beck, A. T., & Creed, T. A. (2017). In-Session Stuck Points and Pitfalls of Community Clinicians Learning CBT: Qualitative Investigation. Cognitive and Behavioral Practice, 24(2), 256-267.

What to do with the results from the PCS


The Pain Catastrophising Scale is one of the more popular measures used in pain assessment. It’s popular because catastrophising (thinking the worst) has been identified as an especially important risk factor for slow recovery from pain (Abbott, Tyni-Lenne & Hedlund, 2010), for reporting high levels of pain intensity (Langley, 2011), and for ongoing disability (Elfving, Andersoon & Grooten, 2007). I could have cited hundreds more references to support these claims, BTW.

The problem is, once the PCS is administered and scored: what then? What difference does it make in how we go about helping a person think a little more positively about their pain, do more and feel more confident?

If you haven’t seen my earlier posts about the PCS, take a look at this, this, and this for more details.

Anyway, so someone has high scores on rumination, helplessness and magnifying – what does this mean? Let’s say we have two people attending the clinic, one has really high scores on all three subscales, while the other has low or average scores. Both have grumbly old low back pain, both have had exercises in the past, both are finding it tough to do normal daily activities right now.

For a good, general pain management approach to low back pain, and once red flags are excluded (yes, the “bio” comes first!) this is what I do. I establish what the person thinks is going on and ask if it’s OK to talk about pain neurobiology. Together we’ll generate a pain formulation, which is really a spaghetti diagram showing the experience as described by the person (I used guided discovery to develop it). I then ask the person what they’d be doing if their pain wasn’t such a problem for them, perhaps what they’re finding the most frustrating thing about their situation at the moment. Often it will be sleep, or driving or cooking dinner, or perhaps even getting clothes on (shoes and socks!). I’ll then begin with helping the person develop good relaxed breathing (for using with painful movements), and start by encouraging movement into the painful zone while remaining relaxed, and tie this in with one of the common activities (occupations) the person needs or wants to do. For example, I’ll encourage bending forward to put shoes and socks on while breathing in a relaxed and calm way. I’ll be watching and also encourage relaxing the shoulders and any other tense parts of the body. For someone who is just generally sore but doesn’t report high pain catastrophising, I will also encourage some daily movements doing something they enjoy – it might be walking, yoga, dancing, gardening, whatever they enjoy and will do regularly every day for whatever they can manage. Sometimes people need to start small so 5 minutes might be enough. I suggest being consistent, doing some relaxation afterwards, and building up only once the person has maintained four or five days of consistent activity. And doing the activity the person has been finding difficult.

If the person I’m seeing has high scores on the PCS I’ll begin in a similar way, but I’ll teach a couple of additional things, and I’ll expect to set a much lower target – and probably provide far more support. Catastrophising is often associated with having trouble disengaging from thinking about pain (ruminating), so I’ll teach the person some ways to deal with persistent thoughts that hang around.

A couple to try: mindfulness, although this practice requires practice! It’s not intended to help the person become relaxed! It’s intended to help them discipline their mind to attend to one thing without judgement and to notice and be gentle with the mind when it gets off track, which it will. I ask people to practice this at least four times a day, or whenever they’re waiting for something – like the jug to boil, or while cleaning teeth, or perhaps waiting for a traffic light.

Another is to use a “15 minutes of worry” practice. I ask the person to set a time in the evening to sit down and worry, usually from 7.00 – 7.15pm. Throughout the day I ask the person to notice when they’re ruminating on their situation. I ask them to remind themselves that they’re going to worry about that tonight and deliberately put that worry aside until their appointment with worry. Then, at 7.00pm they are asked to get a piece of paper and write ALL their worries down for a solid 15 minutes. No stopping until 15 minutes is over! It’s really hard. Then when they go to sleep, I ask them to remind themselves that they’ve now worried all their worries, and they can gently set those thoughts aside because they won’t forget their worry, it’s written down (I think worry is one way a mind tries hard to stop you from forgetting to DO something about the worry!). People can throw the paper away in the morning because then it begins all over again.

Usually people who score high on the PCS also find it hard to be realistic about their pain, they’ll use words that are really emotive and often fail to notice parts of the body that aren’t in pain. By noticing the worst, they find it tough to notice the best.  I like to guide people to notice the unloved parts of their body, the bits that don’t hurt – like the earlobes, or the belly button. I’ll offer guidance as to what to notice while we’re doing things, in particular, I like to guide people to notice those parts of the body that are moving smoothly, comfortably and that look relaxed. This is intended to support selective attention to good things – rather than only noticing pain.

Finally, I give more support to those who tend to be more worried about their pain than others. So I might set the goals a little lower – walking for five times a week, two days off for good behaviour rather than every day. Walking for five minutes rather than ten. And I’ll check in with them more often – by text, email or setting appointments closer together. It’s important for people who fear the worst to experience some success, so setting small goals that are achieved can build self efficacy – especially when I try hard to offer encouragement in terms of what the person has done despite the odds. So, if the person says they’ve had a real flare-up, I’ll try to boost confidence by acknowledging that they’ve come in to see me even though it’s a bad pain day, that they’ve tried to do something instead of nothing, that talking to me about the challenge shows guts and determination.

People who see the glass as half empty rather than half full are just people. Like you and I, they’re people who have a cognitive bias. With support, we can help people view their pain differently – and that process applies to all of us, not just those with high scores on the PCS.

 

Abbott, A. D., Tyni-Lenne, R., & Hedlund, R. (2010). The influence of psychological factors on pre-operative levels of pain intensity, disability and health-related quality of life in lumbar spinal fusion surgery patients. Physiotherapy, 96(3), 213-221. doi:10.1016/j.physio.2009.11.013

Elfving, B., Andersson, T., & Grooten, W. J. (2007). Low levels of physical activity in back pain patients are associated with high levels of fear-avoidance beliefs and pain catastrophizing. Physiotherapy Research International, 12(1), 14-24.

Langley, P. C. (2011). The prevalence, correlates and treatment of pain in the european union. Curr Med Res Opin, 27(2), 463-480. doi:10.1185/03007995.2010.542136

… a little more about Pain Catastrophising subscales


I’ve been writing about the Pain Catastrophising Scale and how to use this instrument in clinical practice these last two posts here and here because the construct of catastrophising (thinking the worst) has become one of the most useful to help identify people who may have more distress and disability when dealing with pain. Today I want to continue with this discussion, but looking this time at a large new study where the subscales magnification, rumination and hopelessness have been examined separately to understand their individual impact on pain severity and disability.

Craner, Gilliam and Sperry looked at the results of 844 patients with chronic pain prior to taking part in a group programme (a heterogeous sample, rather than a single diagnosis, so this group probably look at lot like those admitted to high intensity tertiary chronic pain management services such as Burwood Pain Management Centre here in Christchurch).  Most of the participants were female, European/white and married, and had chronic pain for an average of 10.7 years. Just over half were using opioid medication to manage their pain.

Along with the PCS, participants also completed some very common measures of disability (Westhaven-Yale Multidimensional Pain Inventory – MPI) and quality of life (SF-36), and the CES-D which is a measure of depression.

Now here comes some statistical analysis: multiple hierarchical regression! Age, sex, duration of pain and use of opioids were entered into the equation and found to account for only 2.0% variance of the pain severity subscale of the MPI – but once the PCS was added in (subscales entered separately) an additional 14% of the variance was accounted for, but the helplessness subscale was the only one to contribute significantly to the overall variance.

When Pain Interference was  entered as the dependent variable, all the same demographic variables as above contributed a meagre 1.2% of the variance, but when the Pain Severity subscale scores were added, 25.5% of the variance was explained – while the combined PCS subscales contributed 6.5% of the variance. Again, helplessness was the only subscale to contribute to Pain Interference.

Moving to quality of life – the physical subscale of the SF-36 was used as the dependent variable, and once again the demographic variables accounted for only 1.5% variance in physical QOL, with Pain Severity accounting for 23%. PCS subscales contributed only 2.6% of the variance, with only the magnification subscale being identified as a unique contributor. When the mental health subscale was used, again demographics only accounted for 1.2% of variance, with pain severity accounting for 12.4% of the variance. This time, however, the PCS subscales contributed 19.5% of the variance with both Magnification and Helplessness contributing to the variance.

Finally, examining depression, demographics contributed a small amount of variance (3.3%), with pain severity additing 9.8% of variance. The PCS subscales were then entered and contributed a total of 21% to the prediction of depression with both Magnification and Helplessness contributing to the overall depression variance.

The so what factor

What does this actually mean in clinical practice? Well first of all this is a large group of patients, so we can draw some conclusions from the calculations – but we need to be a little cautious because these participants are a group who have managed to get into a tertiary pain management facility. They’re also a group with a large percentage using opioids, and they were pretty much all European – and from North America, not New Zealand. I’m not sure they look like the people who might commonly come into a community-based facility, or one where they’d be referred directly from a GP or primary care centre.

At the same time, while this group may not look like the people most commonly seen for pain management, they share some similar characteristics – they tend to magnify the “awfulness” of pain, and then feel helpless when their pain is bothering them. Surprisingly, I thought, ruminating or brooding on pain wasn’t a unique contributor and instead the helplessness scale contributed the most to pain severity, pain-related interference (disability associated with pain), poor mental health quality of life, and low mood, while magnification scale contributed to poorer physical health quality of life, mental health quality of life and low mood.

What this means for practice

The authors suggest that the construct measured by the helplessness subscale might be a factor underlying poor adaptation to life’s difficulties in general, leading to passivity and negative emotions. They also suggest that magnification might be a unique contributor to perceiving obstacles to doing the things we need to do every day, while hopelessness might mean people are less likely to participate in enjoyable activities and then in turn contribute to feeling low.

Importantly, the authors state: “We offer that simply collapsing the 3 dimensions of this phenomenon (ie, rumination, magnification, helplessness) may actually conceal nuanced relationships between specific dimensions of catastrophizing and outcomes that would might inform treatment approaches.” Looking at the overall scores without thinking about the subscales is going to give you less information to use for individualising your treatment.

In a clinical setting I’d be reviewing the individual subscales of the PCS alongside both disability and mood measures to see if the suggested relationships exist in the scores this person has given.

I’d be taking a look at the repertoire of coping strategies the person can identify – and more, I’d be looking at how flexibly they apply these strategies. Extending the range of strategies a person can use, and problem-solving ways to use these strategies in different activities and contexts is an important part of therapy, particularly occupational therapy and physiotherapy. Another approach you might consider is helping people return to enjoyable activities that are within their tolerance right here, right now. By building confidence that it’s possible to return to things that are fun we might counter the effects of helplessness, and help put pain back where it belongs – an experience that we can choose to respond to, or not.

I’d also be taking a look at their tendency to avoid feeling what their pain feels like, in other words I’d like to see if the person can mindfully and without judging, complete a body scan that includes the areas that are painful. This approach is intended to help people notice that alongside the painful areas are other nonpainful ones, and that they can successfully be with their pain and make room for their pain rather than attempting to block it out, or over-attend to it. The way mindfulness might work is by allowing people to experience the sensations without the judgement that the experience is bad, or indicates some terrible catastrophe. It allows people to step back from the immediate reaction “OMG that’s BAD” and to instead take time to view it as it actually is, without the emotional halo around it.

Pain catastrophising is a useful construct – but I think we need to become more nuanced in how we use the scores from the questionnaire.

Craner, J. R., Gilliam, W. P., & Sperry, J. A. (2016). Rumination, magnification, and helplessness: How do different aspects of pain catastrophizing relate to pain severity and functioning? Clinical Journal of Pain, 32(12), 1028-1035.

What do we do with those questionnaires (ii)


In my last post I wrote about the Pain Catastrophising Scale and a little about what the results might mean. I discussed the overall score suggesting a general tendency to “think the worst”, with the three subscales of magnifying or over-estimating the risk; ruminating or brooding on the experience; and helplessness or feeling overwhelmed and that there’s nothing to be done.  At the end of the post I briefly talked about how difficult it is to find a clinical reasoning model in physiotherapy or occupational therapy where this construct is integrated – making it difficult for us to know what to do differently in a clinical setting when a person presents with elevated scores.

In this post I want to show how I might use this questionnaire in my clinical reasoning.

Alison is a woman with low back pain, she’s been getting this niggling ache for some months, but last week she was weeding her garden and when she stood up she felt a sharp pain in her lower back that hasn’t settled since. She’s a busy schoolteacher with her own two children aged 8 and 10, and doesn’t have much time for exercise after teaching a full day, and bringing children’s work home to grade at night. She’s completed the PCS and obtained an overall score of 33, with her elevated scores on the magnifying subscale contributing the most to her total score.

Her twin sister Belinda has coincidentally developed low back pain at the same time, only hers started after she had to change the tyre on her car over the weekend. She’s a busy retail manager preparing for the upcoming Christmas season, and also has two children just a bit younger than her sister’s two. She’s completed the PCS and obtained an overall score of 34, but her score on ruminating is much higher than her scores on the other two scales, and this is the main reason her overall score is high.

What difference does Belinda’s elevated score on ruminating mean for us as clinicians? What do we do when we see Alison’s overall elevated score?

Common themes

Both Alison and Belinda live busy lives, and have lots of stressors within their lives. While they both have similar presentations, we might go about helping them regain confidence in their bodies slightly differently. I’ll begin with Belinda who might, because of the elevated ruminating score, have trouble getting off to sleep and might spend more time attending to her back pain than her sister. Ruminating is that endless brainworm that keeps on dragging our attention back to the thing we’re worried about (or perhaps the problem we’re trying to solve).  Alison, on the other hand, might be more inclined to monitor her back pain and imagine all sorts of dire outcomes – perhaps that the pain will never go away, that it’s going to “cripple” her, and that it’s going to be a major problem while she’s at work.

While both sisters would benefit from learning to move with more confidence, to relax the muscle tension that occurs when back pain is present, and to return to their usual daily activities, we probably need to help Alison learn more about her back pain (for example, explain that most back pain settles down quite quickly, that it’s helped by moving again in a graduated way, and that we’ve ruled out any sinister reason for her developing her pain). During treatment sessions where we help her learn to move more normally, we might spend more time giving neutral messages about fluctuations in her pain (for example, we might let her know that it’s normal to have a temporary increase in pain when we start moving again, and that this is a good sign that she’s beginning to use her body normally). If we notice her looking anxious during a new movement or exercise we might take a moment to ask her about her concerns and provide her with neutral and clear information about what’s going on so she becomes more realistic in her judgements about what her pain means.

For Belinda I might be inclined to help her deal with her thoughts in a mindful way, so she can notice her thoughts and her body sensations without judging them, bringing her mind back to breathing, or to noticing the equally present but less “alerting” body sensations she may be experiencing. For example I might ask her to do a mindfulness of breath exercise where, as she notices her mind wandering off to worries or concerns, I would ask her to gently notice that this has happened, acknowledge her mind for trying to help solve an insoluble problem, and bring her attention back to her breathing. I might ask her to notice body sensations including those that are uncomfortable and around the area of her most intense pain, taking care to be aware not only of the painful sensations she’s experiencing, but also associated body responses such as breath holding, or muscle tension. I might guide her to also be aware of a neutral but generally unloved area like her left earlobe (when did you last attend to what your left earlobe felt like?), or her navel. Because at the same time as she’s noticing the painful areas of her body, she’s likely to be trying hard to avoid “going there” with the result that her mind (trying really hard to help her protect herself) actually goes there more often! (don’t believe me? Don’t think of a big fat spider crawling down your shoulder – betcha did!!). Belinda can use the same approach when she’s trying to get off to sleep – by non-judgmentally noticing her body and what’s going on, she can be aware of what it feels like – but not get hooked up in alarming appraisals of what “might” happen. In a clinic setting I might ask her to use this same mindfulness approach when we’re doing a new exercise, or returning to a new activity. She could take time to really feel the movements, to be “in” her body rather than her head, and in doing so gradually reduce the tendency for her mind to take off in new and frightening directions.

Using the PCS is not about becoming psychologists: it’s about being aware of what the person in front of us is telling us about their experience, and then tuning into that and responding appropriately while we do what we do. Our job isn’t to replace a psychologist’s contribution – but to use the results of psychometric questionnaires to augment and support the work we do in a setting where people are actively engaged in learning about their bodies. I think that’s a priceless opportunity.

Schutze, R., Slater, H., O’Sullivan, P., Thornton, J., Finlay-Jones, A., & Rees, C. S. (2014). Mindfulness-based functional therapy: A preliminary open trial of an integrated model of care for people with persistent low back pain. Frontiers in Psychology Vol 5 Aug 2014, ArtID 839, 5.

Tsui, P., Day, M., Thorn, B., Rubin, N., Alexander, C., & Jones, R. (2012). The communal coping model of catastrophizing: Patient-health provider interactions. Pain Medicine, 13(1), 66-79.