function

Six old papers for pain clinicians


We’re rather flighty beasts, us clinicians. From looking at the various ads for courses on the interwebs, it seems we’re all ready to jump on to the next newest thing. This same “what’s new” attitude is present in journals as well –  “these references are very old, are there newer ones you can use?”

Here’s a question: what happens to the old stuff? Is it outdated and useless? Do really well-conducted studies have a “use-by” date? Are older therapies always less effective than the new ones? What if this urge to “refresh” means we do actually throw the baby out with the bathwater?

Some of you will know that I’m keen on reading about the history of how we manage pain. I think it helps put some of our current dilemmas into perspective – and helps us understand “legacy” beliefs: things people believe based on old ideas about how our body works. It reminds me that some of these problems are not about research evidence, but about very human issues of political clout, social inertia, and legal factors (thinking of my recent post on the ” Dynasty of the Disc“.

So, today I want to talk about reading old papers. Papers written maybe in the 1960’s or 1970’s, 1980’s and 1990’s. Even from 2000 and on!

Here are some papers I think everyone working in pain and pain management should review:

  1. Melzack, R., & Wall, P. D. (1965). Pain mechanisms: a new theory. Science, 150(3699), 971-979.

The original paper, the one that ignited new ways of thinking about pain. Not a very long paper, and yes, many of the details proposed in this paper have been revised in light of new information, but the essential groundbreaking principles, distinguishing between nociception and pain, between peripheral and central mechanisms, of the modulation that occurs at every single synapse to and from the brain, of the need for us to consider OMG the brain!  This is the bit that really grabs my attention: 2. Fordyce, W. E., Fowler, R. S., & Delateur, B. (1968). An Application of Behavior Modification Technique to a Problem of Chronic Pain. Behaviour Research and Therapy, 6(1), 105-107.

This is the original paper by Fordyce and colleagues, demonstrating that by following the principles of operant conditioning, a person with persistent and disabling pain could return to daily life. It was extraordinary in that instead of focusing on pain – it focused on behaviour. Fantastic description of behaviour therapy in action.

3. Fordyce, W. E. (1988). Pain and Suffering: A Reappraisal. American Psychologist, 43(4), 276-283.  This is another paper by Fordyce, this time discussing distinctions between pain and suffering – he clearly articulates Loeser’s “onion rings” model which has been reproduced, revised, and possibly warped out of shape in various papers since (do a Google search and see what you can find!).

4. Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, 196(4286), 129-136. doi:http://dx.doi.org/10.1126/science.847460 The classic Engel paper, written for a psychiatry audience but with a far far wider impact on healthcare since. It’s really useful to read how Engel put this model together, the context at the time, and his ideas for how it might be used. The part that really gets me is how he considers the path from being a person to being a patient – that decision-making process to seek treatment which is rarely discussed (but is, I think, a crucial indicator of the expectations the person brings to a consultation)

5. Ignelzi, R. J., Sternbach, R. A., & Timmermans, G. (1977). The pain ward follow-up analyses. Pain, 3(3), 277-280. This paper is one of the very first to show that surgical approaches to pain management don’t provide the most wonderful outcomes, at least not in comparison with those who were participants in a pain management programme. I think it’s interesting because it shows the use of long term follow-up data to demonstrate effectiveness. Who would have thought two and three year outcomes would show such differences? And I wonder what would happen today?

6. I couldn’t resist this one: Fordyce, W., McMahon, R., Rainwater, G., Jackins, S., Questad, K., Murphy, T., & De Lateur, B. (1981). Pain complaint-exercise performance relationship in chronic pain. Pain, 10(3), 311-321. Why? Because as far back as 1981 we were seeing that advice to stop doing, or to use pain as a guide, was unhelpful. Perhaps it’s time we took this one on board?

There. Old papers. Old messages – perhaps ones we have still to adopt. Can we do better? Shouldn’t we do better? Should we stop trying to create new and groovy stuff and instead implement some of these really old principles?

 

Disclaimer: the adverts placed at the bottom of these posts are NOTHING TO DO WITH ME!!
Advertisements

Myths about exposure therapy


Exposure therapy is an effective approach for pain-related anxiety, fear and avoidance, but exposure therapy is used less often than other evidence-based treatments, there is a great deal of confusion about graded exposure, and when it is used, it is not always well-conducted. It’s not a treatment to be used by every therapist – some of us need to challenge our own beliefs about pain, and whether it’s OK to go “into” the pain a little, or even slightly increase pain temporarily!

Below are some common misconceptions and suggestions for how to overcome them:

Misconception: Exposure therapy causes clients undue distress and has adverse consequences.

Suggestions: Although exposure therapy can lead to temporary increases in anxiety and pain, it is important to remember that these symptoms are not dangerous, and that exposure is generally carried out in a very gradual and predictable way. Exposure very rarely causes clients harm, but it is important to know your clients’ medical histories. For example, a client with a respiratory condition would not be asked to complete an exposure designed to elicit hyperventilation.

I usually begin with a really clear explanation for using this approach, basing my explanation on what the person has already said to me. By using Socratic or guided discovery, I try to understand the logic behind the person’s fear: what is it the person is most worried about? Often it’s not hurt or harm, it’s worrying that they won’t sleep, or they’ll have a flare-up that will last a looooong time – and they won’t be able to handle it. These are fundamental fears about having pain and vital to work through if the person is going to need to live with persistent pain for any length of time.

Once I’ve understood the person’s reasons for being bothered by the movements and pain, then I work on developing some coping strategies. These must be carefully carried out because it’s so easy to inadvertently coach people into using “safety behaviours” or “cues” that work to limit their contact with the full experience. Things like breath control, positive self-statements, any special ways of moving, or even ways of recovering after completing the task may serve to control or reduce contact with both anxiety and pain. I typically draw on mindfulness because it helps people focus on what IS happening, not what may have happened in the past – or may happen in the future. By really noticing what comes up before, during and after a graded exposure task, and being willing to experience them as they are, people can recognise that anticipating what might happen is often far worse than what does happen.

Finally, I’ll work through the scenario’s – either pictures of movements and activities, or descriptions of the same things. I prefer photographs (based on the Photographs of Daily Activity), because these elicit all the contextual details such as the other people, weather, flooring or surface and so on that are often factors increasing a person’s concerns. We begin with the activity that least bothers the person and consistently work up from there, with practice in the real world between sessions. I’ll go out to the places the person is most concerned about, we’ll do it together at first, then the person can carry on by themselves afterwards.

Misconception: Exposure therapy undermines the therapeutic relationship and leads to high dropout.

Suggestions: If you give your person a clear reason for using this approach and deliver it well,  the person is more likely to achieve success – and this in turn strengthens your relationship. Additionally, there is evidence that dropout rates for exposure are comparable to other treatments.

There is something about achieving a difficult thing that bonds us humans, and if you approach graded exposure with compassion, curiosity, and celebration, you may find your relationship is far more rewarding and deeper than if you simply prescribe the same old same old.

Misconception: Exposure therapy can lead to lawsuits against therapists.

Suggestions: Survey data suggest that lawsuits against therapists using exposure are extremely rare. As with any kind of therapy, you can take several steps to protect yourself from a legal standpoint. Don’t forget to obtain informed consent, ensure your treatment is delivered with competency, professionalism, and ethical consideration.

The best book/resource by far for graded exposure is Pain-Related Fear: Exposure-Based Treatment for Chronic Pain, (click) by Johan W.S. Vlaeyen, Stephen J. Morley, Steven J. Linton, Katja Boersma, and Jeroen de Jong.

Before you begin carrying out this kind of treatment, check you have these skills (from the book I’ve referenced):

Vlaeyen, Johan, Morley, Stephen, Linton, Steven, Boersma, Katja, & de Jong, Jeroen. (2012a). Pain-related Fear. Seattle: IASP Press.

Each time we face our fear, we gain strength, courage, and confidence in the doing – Theodore Roosevelt


I’m not certain Theodore Roosevelt actually said that – but who cares?! It’s a great statement. For the person living with persistent pain, though, it can be the last thing you want to hear. After all, it’s tough enough getting up and just doing the normal things let alone challenge yourself! So… how can a health professional help?

Let’s briefly recap. Self efficacy is the confidence I can do something successfully if I wanted to. It’s a robust predictor of many health behaviours including exercise, stopping smoking, eating healthily and coping well with persistent pain (Jackson, Wang, Wang & Fan, 2014; Williams & Rhodes, 2016). It was first introduced as a concept by Bandura as part of his theoretical model of behaviour change, and further discussed in an experimental study in a paper investigating systematic desensitisation processes, arguing that this approach to treatment created and strengthened expectations of personal efficacy (Bandura & Adams, 1977). Bandura argued that people develop a sense (expectation) of self efficacy from their own performance, watching others succeed, being persuaded by someone that yes indeed you have the skills to achieve, and also awareness of physiological arousal from which people can judge their own level of anxiety.

Self efficacy is more than a simple “general confidence” construct, however. It’s far more selective than this. For example, although I believe I can successfully dance in my lounge with no-one there and the curtains closed, this does not translate to me dancing on a stage on my own in the spotlights with an audience watching! Self efficacy refers to confidence to succeed and produce the outcome I desire in a given context – and that’s extremely important for pain management, and in particular, exercise for people experiencing pain.

How does self efficacy improve outcomes? There are at least two ways: (1) through the actions taken to manage or control pain (for example, gradually increasing activity levels but not doing too much) and (2) managing the situations associated with pain (for example, people with low self efficacy may avoid activities that increase pain, or cope by using more medication (Jackson, Wang, Wang & Fan, 2014).

To examine how self efficacy affects outcomes, Jackson and colleagues (2014) conducted a meta-analysis of papers examining this variable along with other important outcomes. Overall effect sizes for relationships between self efficacy and all chronic pain outcomes were medium and highly significant. This is really important stuff – we don’t find all that many studies where a single variable has this much predictive power!

As a moderator, the adjusted overall effect size (r=.50) of self efficacy and impairment was larger than the average effect sizes of meta-analyses on relations between disability and fear-avoidance beliefs, and pain as a threat for future damage and challenge for future opportunities. Self efficacy has stronger links with impairment than cognitive factors such as fear-avoidance beliefs and primary appraisals of pain (Jackson, Wang, Wang & Fan, 2014).  Age and duration of pain were the strongest moderators of these associations and suggest that reduced self-efficacy can become entrenched over time. In other words – as time passes, people experience fewer opportunities for success and begin to expect they won’t ever manage their pain well.

An important point is made by these authors: how we measure self efficacy matters. They found that self efficacy measures tapping “confidence in the capacity to function despite pain” had
stronger associations with impairment than did those assessing confidence in controlling pain or managing other symptoms.

Bolstering self efficacy – not just about telling people they can do it!

Given that self efficacy is domain-specific, or a construct that refers to confidence to do actions that lead to success in specified situations, here are a few of my questions:

  • Why are most people attending pain management programmes provided with gym-based programmes that don’t look at lot like the kinds of things people have to do in daily life? It’s like there’s an expectation that “doing exercise” – any exercise – is enough to improve a person’s capabilities.

    BUT while this might increase my confidence to (a) do exercise and (b) do it in a gym – but does it mean I’ll be more confident to return to work? Or do my housework?

  • How often are people attending gyms told to “push on”, or to “stop if it hurts”? And what effect does this have on people?

If their confidence is low, being told “just do it” is NOT likely to work. People need to experience that it’s possible to do things despite pain – and I think, to be able to handle a flare-up successfully. Now this is not going to happen if we adopt the line that getting rid of all pain is the aim, and that flare-ups should be avoided. If we want people to deal successfully with the inevitable flare-ups that occur, especially with low back pain, then we need to (a) be gentle, and grade the activities in an appropriate way (b) have some “ways of coping” we can introduce to people rather than simply telling them they can cope or reducing the demands (c) have other people around them also coping well (and that includes us health professionals)

  • Ensure we attribute change to the person, not to us.

That’s right: not to our sparkling personality, not to our special exercises, not to the machines we use, not to the techniques we have – you get the drift? Progress must be attributed to the person and his or her skills and perseverance. Because, seriously, all this arguing over which exercise regime is best doesn’t stack up when it’s actually self efficacy that predicts a good outcome.

And for case managers who may read this: just because someone has successfully completed an exercise programme, or a vocational programme with exercise as a component, this does not mean the person can manage successfully at work. Well, they may manage – but they may utterly lack confidence that they can. Context matters.

 

Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. Cognitive Therapy and Research, 1(4), 287-310.

Estlander AM, Takala EP, Viikari-Juntura E., (1998). Do psychological factors predict changes in musculoskeletal pain? A prospective, two-year follow-up study of a working population. Journal of Occupational and Environmental Medicine 40:445-453

Jackson, T., Wang, Y., Wang, Y., & Fan, H. (2014). Self-efficacy and chronic pain outcomes: A meta-analytic review. The Journal of Pain, 15(8), 800-814.

Williams, D. M., & Rhodes, R. E. (2016). The confounded self-efficacy construct: Conceptual analysis and recommendations for future research. Health Psychology Review, 10(2), 113-128.

The confidence that you’ll succeed if you try…


Self efficacy. It’s a word bandied about a lot in pain management, and for a group of clinicians in NZ, it’s been a shock to find out that – oh no! They’re not supporting self efficacy with their patients very much! It means “confidence that if I do this under these conditions, I’ll be successful”.

Self efficacy is part of Bandura’s social learning theory (click here for the Wikipedia entry) where he proposed that much of psychological treatment is driven by a common underlying mechanism: to create and strengthen expectations of personal effectiveness. Bandura recognised that we don’t always have to personally experiment through trial and error in order to learn. Self efficacy expectations were thought to develop from personal experience (let me do, and I’ll learn how); watching other people try (show me, and I’ll see if you succeed, then I’ll copy you); verbal persuasion that aims to convince that you have the capabilities to manage successfully (encourage me, let me know I can, and I’ll try); and how physiologically aroused or alert you are (if I feel confident inside, I’ll try but if I feel anxious or stressed I’m less inclined to) (Bandura, 1977).

Bandura and colleagues established that “different treatment approaches alter expectations of personal efficacy, and the more dependable the source of efficacy information, the greater are the changes in self-efficacy.” (Bandura & Adams, 1977, p. 288). The conclusions drawn from this mean that treatments where people DO and succeed are more effective at enhancing their belief in self efficacy, while watching others, or being told how to do something are far weaker at building this effect.

Bandura began working on this theory while pondering how psychological treatments, particularly for systematic desensitisation or graded exposure, generated their effects. Systematic desensitisation aimed to reduce arousal levels and thus avoidance while being in a relaxed state – therefore the person is exposed to increasingly “aversive” stimuli (stimuli you want to avoid) while remaining calm and relaxed. Bandura thought that there were other factors involved in avoidance behaviour, developing his theory that expectations of negative consequences alone can generate fear and defensive behaviour and that this isn’t necessarily reflected in autonomic arousal and actions. Bandura hypothesised that reducing physiological arousal improved performance not by eliminating a drive to escape – but instead by increasing the confidence that the person can successfully manage the situation.

For parents, the idea that if you believe you can do what you set out to do, is embodied in the little book “The Little Engine That Could” (Piper, 1930/1989). Remember? The little engine that couldn’t because all the bigger engines said so, but then tried and tried and believed he could – and he did!

So, what does this have to do with pain management?

Let’s paint a scenario. Allan comes to see a hands-on therapist because he has a sore back. He believes that hands-on therapy is the thing, because others have said it’s really good. He goes, gets his treatment and wow! Things improve! The next time he has a sore back (because, you know, it almost always comes back) what does he do? Well, on the basis of his past experience, he heads to his hands-on therapist, because he’s confident this will help his pain. The problem is, his therapist has moved town. He’s a bit stuck now because in his town there are not many therapists doing this particular kind of treatment – what does he do? He doesn’t believe that anyone else can help, and he has no belief that he can manage by himself. He has little self efficacy for managing his own back pain.

Self efficacy is not about whether a person can do certain movements, it’s about believing that the person can organise skills to achieve goals within a changing context – not just what I will do, under duress, but what I can do, what I’m capable of doing, and what I say I’ll probably do.

Self efficacy is not a belief that a specific behaviour will lead to a certain outcome in a certain situation, it’s the belief that I can perform that behaviour to produce the outcome.

So, self efficacy isn’t a generalised attitude – it’s a specific belief about certain actions, certain outcomes in certain situations. It’s not a personality trait like hardiness, or resilience, or general confidence or self-esteem, it’s about being confident that I can generate a solution to a problem in a particular part of my life.

The times when we’re least confident are often when we’re facing a new experience, or we’ve had a bad experience previously. Particularly if we’ve seen other people fail at the same thing, or succeed but do so with much fear and loathing. In the case of pain, there are ample opportunities to have a bad experience in the past, and to learn from other people around us that – oooh back pain is something to be afraid of, and you can’t manage it alone – you need to get help from someone else. Consequently, many people have very low self efficacy for successfully dealing with a bout of low back pain.

And health professionals: we can foster this.

How? By implying that success is due to what we do, rather than being a natural process of recovery. By suggesting it’s something about our “magic hands” or pills, or injections or surgery or special exercises, or “using the core correctly”. In doing so, we’re generating a belief that the person cannot manage alone. That it’s not what the person does, but the magic hands, pills, injections, surgery, special exercises or using the core…

Damush, Kroenke, Bair, Wu, Tu, Krebs and Poleshuck (2016) found that self management approaches to pain increase self efficacy, self management actions, and reduced pain intensity and depression in a group of community patients with chronic musculoskeletal pain and depression. A typically tough group to work with because confidence to succeed at anything is pretty low in depression. Self management aims to ensure the credit for recovery lies with the person doing things that help – creating and supporting a belief that the person has the capability to successfully manage their situation. The techniques? Simple strengthening and stretching exercises, progressive muscle relaxation, and visualisation, in a group setting. Strategies that typically don’t need technology, but do provide support. Information about the natural history of recovery was included – so people were given realistic and optimistic information about their recovery, whether it meant pain reduction, or not. The usual goal setting, problem-solving, and positive self talk were encouraged, and people set goals each week to achieve – maybe based on something from the session, or something the person wanted to do for themselves.

This is not a high-tech approach. This is simple, straightforward pain management as it has been done for years (right back as far as the mid-1970’s and Sternberg!). And through it, these people become increasingly confident that they could successfully manage their own mood and pain independently. As a business model it’s probably not the best for repeat business – but oh how good for those participants who could go away and live their lives without having to think of themselves as patients.

More on self efficacy in the next couple of weeks – we can help people to become confident that they can succeed at managing their pain if it should happen again.

 

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review,  84, 191-215.

Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. Cognitive Therapy and Research, 1(4), 287-310.

Damush, T., Kroenke, K., Bair, M., Wu, J., Tu, W., Krebs, E., & Poleshuck, E. (2016). Pain self‐management training increases self‐efficacy, self‐management behaviours and pain and depression outcomes. European Journal of Pain, 20(7), 1070-1078.

Maddux, J. E. (2016). Self-efficacy Interpersonal and intrapersonal expectancies (pp. 55-60): Routledge.

Assessing problems with sleep and pain – ii


Last week I wrote about my approach to assessing sleep problems in those with persistent pain. As an ex-insomniac I’ve spent a while learning about sleep so I can understand what’s going on, and why sleep can be such a problem. In this week’s post I want to dig a little deeper into what’s going on with poor sleep, as well as some of the unique features of sleep in people experiencing persistent pain.

Having reviewed the five main areas that are fundamental (and can/should be assessed by anyone working with people who experience persistent pain), the next area I want to look at with people is mood. There are two primary psychopathological contributors to poor sleep: the first we’ve dealt with last week (Question 4 – what’s going through your mind…) which is by far and away the most common initiator and maintainer of insomnia, and it doesn’t even need to be a diagnosable anxiety disorder! The second, you’ll probably have guessed, is depression.

Depression is common in people with both rotten sleep and ongoing pain (Boakye, Olechowski, Rashiq, Verrier, Kerr, Witmans et al, 2016), and there are some suggestions that pain and depression may be related and similar neurobiological processes may be involved for both (increased limbic activity being one of them). In depression, there is increased activity in the HPA Axis, reduced BDNF (brain-derived neurotrophic factor), and reduced 5HT with increased pro-inflammatory cytokines . In persistent pain, there may be activity in the HPA Axis, there is certainly reduced BDNF except in the spinal cord, and reduced 5HT, along with increased pro-inflammatory cytokines. And in sleep disturbances there is also increased activity in the HPA Axis, redced BDNF, reduced 5HT and guess what… increased pro-inflammatory cytokines. And all three interact with one another so that if you happen to be depressed, you’re more likely to experience pain that goes on, and your sleep will also reduce your mood and increase your pain. And the reverse. All very messy indeed!.

What this means is that assessing for low mood and the impact on sleep is important – if someone’s describing waking well before they usually do, in the wee small hours (anywhere from 3 – 5am if they usually wake at 7.00am) I’m ready to screen for low mood. To be honest I always assess for that anyway! Depression is also associated with low motivation and loss of “get up and go” so this is likely to interact with poor sleep, creating a very tired person.

There are three other very important aspects of sleep I like to assess for: sleep apnoea, where someone stops breathing for seconds to minutes at a time, often snorting awake, and this may be associated with snoring and daytime sleepiness. Often the person won’t be aware of their sleep apnoea, so it can be helpful for a bed-partner to let you know whether this is a feature of your patient’s sleep.

The next are a group of movement disorders of sleep, many of which are associated with the third area I assess, which are medications.

Movement disorders of sleep include restless leg syndrome – that feeling of absolutely having to move the legs, usually at night, and relieved by getting up to walk around, but in doing so, making it difficult to sleep. Another is periodic limb movement disorder of sleep, which can be every 5 – 30 seconds of leg twitching all night long, and in some cases, whole body twitching though this is less frequent and less rhythmic. This latter problem may not be noticed by the person – but their bed-mate will know about it! – and this problem may be associated with both sleep apnoea and restless leg, AND some doses of antidepressants. Another common contributor to these problems is low iron levels – worth checking both iron and medications!

Finally with medications, I like to understand not only what the person is taking, but also when they’re taking them. Several points are important here: some medications are usually sedating such as tricyclic antidepressants but in some people nortriptyline can paradoxically increase alertness! If that’s the case, timing the dose is really important and should be discussed with either the prescribing doctor, or a clinical pharmacist. Opioids depress respiration (ie slow breathing down) so can be problematic if the person has sleep apnoea AND is taking opioids, the drive to inhale may be less, causing more frequent and deeper periods without breathing normally. For restless legs and periodic limb movement disorder, some antidepressants (venlafaxine is one of them) in high doses can cause the twitching and once the dose is reduced, this fades away, at least a bit.  There is a very small amount of research suggesting that NSAIDs can influence sleep quality in some people also.

The effects of poor sleep are many: anything from micro-sleeps during the day (problematic while driving or operating machinery!), to more irritability, sluggish responses, less concentration and more difficulty solving problems. Pain is associated with more frequent micro-wakenings during the night (Bjurstrom & Irwin, 2016) but findings with respect to whether deep sleep, REM sleep or light sleep were consistently more affected weren’t clear.

Having completed my assessment, more or less, I can also use a few pen and paper measures: Wolff’s Morning Questions (Wolff, 1974), Kryger’s Subjective Measurements (1991), Pittsburgh Sleep Quality Index (Bysse, Reynolds, Monk et al, 1989) and the Sleep Disturbance Questionnaire (Domino, Blair,& Bridges, 1984) are all useful. Speaking to the partner is an excellent idea because I don’t know about you but I never snore but my partner swears I do! Who do you believe?!

People experiencing insomnia are not very reliable when describing their own sleep habits – we’re terrible at noticing when we’re actually asleep or awake in those early stages of sleep, so we typically think we’ve slept less than we actually have. We also do a whole lot of things to avoid not sleeping – and these can actually prolong and extend our sleeplessness!

We’ll discuss what to do about the factors you may have identified in your sleep assessment in next week’s instalment, but you can rest assured it’s not crucial for you to do anything yourself about some things. For example, if someone has sleep apnoea, referring for a sleep study is important, but not something YOU need to do! But please make sure a referral is suggested to someone who can make it happen. Similarly with medications and sleep movement disorders, it’s not something you should tackle on your own – please discuss managing these with a specialist sleep consultant, psychiatrist, or the person’s own GP. Mood problems – treat as you would any time you find someone with a mood problem.

Next week – off to the Land of Nod: A roadmap?!

 

Boakye, P. A., Olechowski, C., Rashiq, S., Verrier, M. J., Kerr, B., Witmans, M., . . . Dick, B. D. (2016). A critical review of neurobiological factors involved in the interactions between chronic pain, depression, and sleep disruption. The Clinical Journal of Pain, 32(4), 327-336.

Buysse DJ, Reynolds CF 3rd, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28(2):193–213.

Domino G, Blair G, Bridges A. Subjective assessment of sleep by Sleep Questionnaire. Percept Mot Skills 1984;59(1):163–70.

Kryger MH, Steljes D, Pouliot Z, et al. Subjective versus objective evaluation of hypnotic efficacy: experience with zolpidem. Sleep 1991;14(5):399–407.

Moul DE, Hall M, Pilkonis PA, et al. Self-report measures of insomnia in adults: rationales, choices, and needs. Sleep Medicine Reviews, 2004;8(3):177–98.

Wolff BB. Evaluation of hypnotics in outpatients with insomnia using a questionnaire and a self-rating technique. Clin Pharmacol Ther 1974;15(2):130–40.

Do pain management programmes really influence “doing” in daily life?


Disability and coping are two of the most important targets in persistent pain management, along with distress and pain intensity (the latter perhaps being the most difficult to influence). A question, however, is whether existing measures of disability truly capture the activities or occupations that people most value. For example, if house cleaning is just not my thing, even if my functioning improved over the course of a programme, would I choose to spend that new capability on vacuum-cleaning or out there in the garden?!

The Westhaven-Yale Multidimensional Pain Inventory (MPI)(Kerns, Turk & Rudy, 1985)  is a true workhorse of pain management measurement: It’s a measure that provides, via the subscales, an estimate of the complex inter-relationships involved in pain-related disability and distress. Three profiles of coping approach have been derived from the MPI indicating “Adaptive Coping” – the person is likely to continue to improve and engage in living well if they carry on as they are; “Interpersonally Distressed” – the person is experiencing difficulties with relationships and is feeling unsupported by others around them; and “Dysfunctional” – the person is struggling with their pain, and both disability and distress can feel overwhelming.

But the disability components of the MPI don’t really indicate the kinds of activities that people might be passionate about – or those that are relevant to their lives. The items are about general activities people “typically” do – in a North American setting. I know they’ve been validated in many different populations but they still represent a general idea of activity and function rather than the unique and idiosyncratic occupations that people do. (What's the difference? An occupation is the unique way I perform the important tasks of my day - the way I dash around the house while simultaneously cleaning my teeth, getting the dogs outside, making sure the curtains are opened and the appliances off just before I head out the door! We could call this "getting ready for work" but the way I do it, and the way you do it is probably very different!)

Why is that important? Well, because people value different occupations differently, and because values drive motivation, a broad measure of disability may not capture the true value of a pain management programme. And this is why the Canadian Occupational Performance Measure (COPM) (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990) is often used by occupational therapists to establish exactly what it is a person wants to be able to do. Goal Attainment Scaling is another option.

The study

In this study by Persson, Eklund, Lexell & Rivano-Fischer (2017), the aims were to assess longterm changes in MPI profiles over the course of a year; to look at associations between “Adaptive Coper” profiles at follow-up and improvements in occupational performance; and to look at factors at baseline that might be used to predict changes over time. Participants were, as usual, attending a tertiary pain management centre at a University hospital. They took part in a 21 day programme (oh the luxury of time!), and were seen by a team working together (oh the luxury of a co-located team!) including a psychologist, physician, physiotherapist, occupational therapist and social worker (oh for interprofessional teamwork!). The measures taken at pre and post were the MPI, COPM, and background demographic details.

Now here’s where the analysis gets pretty technical: dropout rates and pre-treatment differences amongst the MPI profiles were analysed using Matt-Whitney U, Kruskal-Wallis, chi-squared and independent t-test. Cross-tabs were used to describe the distribution of the MPI profiles. McNemar’s test was used to assess changes over time on each of the four profiles, and ultimately the participants were grouped into four profiles: never AC (Adaptive coper); losing AC; gaining AC, and stable AC, and these groupings were used to analyse associations between changes in MPI profile and changes on COPM from baseline to follow-up. And this, folks, is why occupational therapists NEED to learn statistical analyses! Because they went on to use univariate and multivariate logistic regressions to see whether demographic factors would predict these profiles at follow-up, incorporating satisfaction and performance scores on COPM.

What did they find?

More participants started the programme with a profile of dsyfunctional or interpersonally distressed than adaptive coper – and at both discharge and follow-up the adaptive coping group increased to be the largest subgroup. 20% of the participants ended up in the “gaining AC” group, 11% the “stable AC” group, 6% formed the “losing AC” group, and 63% were never in the adaptive coping group at all. Not so terrific in terms of broad outcome measures, but pretty consistent with other programmes around the world.

On the more individualised outcome measure of the COPM, people in the never AC group showed least clinically relevant improvement, both the stable AC and gaining AC groups showed more improvement on occupational performance and satisfaction with performance than the never AC group, while the stable AC group improved more than the losing AC group in terms of occupational performance changes.

Long-term changes showed those who started as AC were more likely to stay that way over time, and baseline scores for occupational performance were significantly associated with being AC at follow-up – in other words, people who felt OK about what they could do in terms of occupation, tended to become more capable and less disabled over time as measured by the MPI. More importantly, those people who had higher baseline scores on occupational satisfaction were 1.3 times more likely to shift to the AC group over time. “Clinically relevant improvements on performance and satisfaction with performance at 1-year follow-up, in occupations prioritized by the participants, were associated with having an AC profile at follow-up.” (p. 6).

Confidence in doing important occupations breeds confidence in other parts of living with persistent pain.

What does this all mean anyway?

Well, importantly, people who shifted from one of the other profiles to adaptive coping over a year showed clinically relevant improvements in occupational performance and satisfaction with performance – the authors suggest these findings show improvements on and satisfaction with “doing and performing” important occupations. Not being classified into adaptive coping at any time was associated with least improvement in occupational performance and satisfaction. There is an association between “doing/performing” and “coping/adapting” that hasn’t really been studied. Perhaps starting with things people enjoy instead of beating them over the head with things they’ve never been interested in could improve pain management outcomes. Pain management programmes DO influence doing in real life – if real life doing is used as therapy!

The authors also point out that “30–47% of participants who did not show an AC profile at follow-up still showed clinically relevant improvements on occupational performance and on
satisfaction with occupational performance.” (p. 8) This suggests that the MPI coping profiles only represent one part of the outcomes that are important to individuals: occupation being the individualised daily doings that people value very highly, and pointing to the need to explore individualised outcome measurement in more studies. Given that patient-centred pain management is based on individual goals, using only generic measures is likely to give misleading outcomes about treatment efficacy.

 

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

Persson, E., Eklund, M., Lexell, J., & Rivano-Fischer, M. (2017). Psychosocial coping profiles after pain rehabilitation: Associations with occupational performance and patient characteristics. Disability and Rehabilitation: An International, Multidisciplinary Journal, 39(3), 251-260.

Thinking the worst – and willingness to do things despite pain


Catastrophising, perhaps more than any other psychological construct, has received pretty negative press from people living with pain. It’s a construct that represents a tendency to “think the worst” when experiencing pain, and I can understand why people who are in the middle of a strong pain bout might reject any idea that their minds might be playing tricks on them. It’s hard to stand back from the immediacy of “OMG that really HURTS” especially when, habitually, many people who have pain try so hard to pretend that “yes everything is really all right”. At the same time, the evidence base for the contribution that habitually “thinking the worst” has on actually increasing the report of pain intensity, increasing difficulty coping, making it harder to access effective ways around the pain, and on the impact pain has on doing important things in life is strong (Quartana, Campbell & Edwards, 2009).

What then, could counter this tendency to feel like a possum in the headlights in the face of strong pain? In the study I’m discussing today, willingness to experience pain without trying to avoid or control that experience, aka “acceptance”, is examined, along with catastrophising and measures of disability. Craner, Sperry, Koball, Morrison and Gilliam (2017) recruited 249 adults who were seeking treatment at an interdisciplinary pain rehabilitation programme (at tertiary level), and examined a range of important variables pre and post treatment.  Participants in the programme were on average 50 years old, mainly married, and white (not a term we’d ever use in New Zealand!). They’d had pain for an average of 10.5 years, and slightly less than half were using opioids at the time of entry to the programme.

Occupational therapists administered the Canadian Occupational Performance Measure, an occupational therapist-administered, semi-structured interview designed to assess a person’s performance and satisfaction with their daily activities (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990). The performance scale was used in this study, along with the Chronic Pain Acceptance Questionnaire (one of my favourites – McCracken, Vowles & Eccelston, 2004); the Pain Catastrophising Scale (Sullivan, Bishop & Pivik, 1995), The Patient Health Questionnaire-9 (Kroenke, Spitzer & Williams, 2001); and The Westhaven-Yale Multidimensional Pain Inventory (Kerns, Turk & Rudy, 1985).

Now here’s where the fun begins, because there is some serious statistical analysis going on! Hierarchical multiple regression analyses is not for the faint-hearted – read the info about this approach by clicking the link. Essentially, it is a way to show if variables of your interest explain a statistically significant amount of variance in your Dependent Variable (DV) after accounting for all other variables. Or, in this study, what is the relationship between pain catastrophising, acceptance and pain severity – while controlling for age, gender, opioids use, and pain duration. The final step was to enter a calculation of the interaction between catastrophising and acceptance, and to enter this into the equation as the final step. A significant interaction suggests one of these two moderates the other – and this is ultimately captured by testing the slopes of the graphs. Complex? Yes – but a good way to analyse these complex relationships.

Results

Unsurprisingly, pain catastrophising and acceptance do correlate – negatively. What this means is that the more a person thinks the worst about their pain, the less willing they are to do things that will increase their pain, or to do things while their pain is elevated. Makes sense, on the surface, but wait there’s more!

Pain catastrophizing was significantly (ps < .01) and positively correlated with greater perceived pain intensity, pain interference, distress due to pain, and depression – and negatively correlated with occupational therapist-rated functioning. Further analysis found that only pain catastrophising (not acceptance) was associated with pain severity, while both catastrophising and acceptance predicted negative effect (mood) using the WHYMPI, but when the analysis used the PHQ-9, both pain catastrophising and pain acceptance uniquely predicted depressive symptoms.  When pain interference was used as the dependent variable, pain acceptance uniquely predicted the amount of interference participants experienced, rather than catastrophising. The final analysis was using the performance subscale of the COPM, finding that pain acceptance was a predictor, while catastrophising was not.

What does all this actually mean?

Firstly, I found it interesting that values weren’t used as part of this investigation, because when people do daily activities, they do those they place value on, for some reason. For example, if we value other people’s opinions, we’re likely to dress up a bit, do the housework and maybe bake something if we have people come to visit. This study didn’t incorporate contexts of activity – the why question. I think that’s a limitation, however, examining values is not super easy, however it’s worth keeping this limitation in mind when thinking about the results.

The results suggest that when someone is willing to do something even if it increases pain, or while pain is elevated, this has an effect on their performance, disability, the interference they experience from pain, and their mood.

The results also suggest that catastrophising, while an important predictor of pain-related outcomes, is moderated by acceptance.

My question now is – what helps someone to be willing to do things even when their pain is high? if we analyse the CPAQ items, we find things like “I am getting on with the business of living no matter what my level of pain is.”;  “It’s not necessary for me to control my pain in order to handle my life well.”; and “My life is going well, even though I have chronic pain.”. These are important areas for clinicians to address during treatment. They’re about life – rather than pain. They’re about what makes life worth living. They’re about who are you, what does your life stand for, what makes you YOU, and what can you do despite pain. And these are important aspects of pain treatment: given none of us can claim a 100% success rate for pain reduction. Life is more than the absence of pain.

 

 

Craner, J. R., Sperry, J. A., Koball, A. M., Morrison, E. J., & Gilliam, W. P. (2017). Unique contributions of acceptance and catastrophizing on chronic pain adaptation. International Journal of Behavioral Medicine, 24(4), 542-551.

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56.

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine. 16(9), 606-13.

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

McCracken LM, Vowles KE, Eccleston C. (2004). Acceptance of chronic pain: component analysis and a revised assessment method. Pain. 107(1–2), pp159–66.

Quartana PJ, Campbell CM, Edwards RR. (2009) Pain catastrophizing: a critical review. Expert Reviews in Neurotherapy, 9, pp 745–58.

SullivanMLJ, Bishop SR, Pivik J. (1995). The Pain Catastrophizing Scale: development and validation. Psychological Assessment. 7:524–32.

Using more than exercise for pain management


In the excitement and enthusiasm for exercise as a treatment for persistent pain, I wonder sometimes whether we’ve forgotten that “doing exercise” is a reasonably modern phenomenon. In fact, it’s something we’ve really only adopted since our lifestyle has moved from a fairly physically demanding one, to one more sedentary (Park, 1994). I also wonder if we’ve forgotten that exercise is intended to promote health – so we can do the things we really want or need to do. Remembering, of course, that some people find exercise actually exacerbates their pain (Lima, Abner & Sluka, 2017), and that many folks experience pain as an integral part of their exercise (think boxing, marathon running, even going to a gym – think of the pain of seeing That Much Lycra & Sweat).

While it’s become “exercise as medicine” in modern parlance (Pedersen & Saltin, 2015; Sallis, 2009; Sperling, Sadnesara, Kim & White, 2017), I wonder what would happen if we unpacked “exercise” and investigated what it is about exercise that makes it effective by comparison with, say, activities/occupations that incorporate whole body movement?

One of the factors that’s often omitted when investigating coping strategies or treatments, especially lifestyle/self management ones, is the context and meaning people give to the activity. Context is about the when, where and how, while meaning is the why. Whether the positives (meaning, and values people place on it) outweigh the negatives (let’s face it, the lycra and sweat and huffing and puffing does not inherently appeal) are factors that enhance (or not) adherence to exercise and activity. One positive is a sense of flow, or “an optimal subjective psychological state in which people are so involved in the activity that nothing else seems to matter; the experience itself is so enjoyable that people will do it even at great cost, for the sheer sake of doing it”(Csikzentmihalyi, 1990, p. 4). I can think of a few things I lose myself in – reading a good book; fishing; paddling across a lake; photography; silversmithing; gardening…

Robinson, Kennedy & Harmon (2012) examined the experiences of flow and the relationship between flow and pain intensity in a group of people living with persistent pain. Their aim was to establish whether flow was an “optimal” experience of people with chronic pain. Now the methodology they used was particularly interesting (because I am a nerd and because this is one technique for understanding daily lived experiences and the relationships between variables over time). They used electronic momentary assessment (also known as ecological momentary assessment) where participants were randomly signaled seven times a day for one week to respond to a question about flow. Computationally challenging (because 1447 measurement moments were taken – that’s a lot of data!), although not using linear hierarchical modeling (sigh), they analysed one-way between group analyses of variance (ANOVA) to explore differences in pain, concentration, self-esteem, motivation, positive affect and potency across four named states “flow, apathy, relaxation and anxiety”. We could argue about both the pre-determined states, and the analysis, but let’s begin by looking at their findings.

What did they find?

People in this study were 30 individuals with persistent pain attending a chronic pain clinic. Their ages ranged from 21 – 77 years, but mean age was 51, and there were 20 women and 10 men (remember that proportion). People had a range of pain problems, and their pain had been present for on average 68 months.

The contexts (environments) in which people were monitored were at home, or “elsewhere”, and, unsurprisingly, 71% were at home when they were asked to respond. Activities were divided into self-care, work and leisure (slightly less time in work than in leisure or self care respectively).  The purpose of the activities were necessity (35%), desire (40%), or “nothing else to do” (18%). And most people were doing these things with either alone or with family, with very small percentages with friends, colleagues or the general public.

Now we’d expect that people doing things they feel so wrapped up in that nothing else matters should experience lower pain – but no, although this was hypothesised, pain intensity scores during flow trended lower – but didn’t actually reach significance. When we add the findings that concentration, self-esteem, motivation, and potency mean scores were highest in the flow state and mean scores were lowest in the apathy and anxiety states, we can begin to wonder whether engaging in absorbing activities has a major effect on pain intensity – or whether the value placed on doing the activities is actually the most important feature for people with pain. Interestingly, people felt their flow experiences while outside the home: this happened rather less often than being in the home, where apathy was most present. So… doing something absorbing is more likely to occur away from home, while remaining at home is associated with more apathy and perhaps boredom. Finally, flow occurred in work settings more than elsewhere, suggesting yet again that work is a really important feature in the lives of all people, including people living with pain. Of course that depends on the kind of work people are doing…and the authors of this paper indicate that people with persistent pain in this study have few places in which they can do highly engaging activities, even including work.

What does this mean for exercise prescription?

Engaging people in something that holds little meaning, has little challenge and may not be in the slightest bit enjoyable is probably the best way to lose friends and have clients who are “noncompliant”. I think this study suggests that activities that provide challenge, stimulation, movement possibilities, the opportunity to demonstrate and develop skill – and that people find intrinsically lead to flow – might be another way to embrace the “movement is medicine” mantra. I wonder what would happen if we abolished “exercises” and thought about “movement opportunities”, and especially movement opportunities in which people living with pain might experience flow? I, for one, would love to see occupational therapists begin to examine flow experiences for people living with pain and embraced the creativity these experiences offer for the profession.

 

 

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Collins.

Lima, L. V., Abner, T. S., & Sluka, K. A. (2017). Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. The Journal of physiology, 595(13), 4141-4150.

Park, R. (1994). A Decade of the Body: Researching and Writing About The History of Health, Fitness, Exercise and Sport, 1983-1993. Journal of Sport History, 21(1), 59-82. Retrieved from http://www.jstor.org/stable/43610596

Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports, 25(S3), 1-72.

Robinson, K., Kennedy, N., & Harmon, D. (2012). The flow experiences of people with chronic pain. OTJR: Occupation, Participation and Health, 32(3), 104-112.

Sallis, R. E. (2009). Exercise is medicine and physicians need to prescribe it!. British journal of sports medicine, 43(1), 3-4.

Sperling, L. S., Sandesara, P. B., Kim, J. H., & White, P. D. (2017). Exercise Is Medicine. JACC: Cardiovascular Imaging, 10(12).

One-session instruction in pacing doesn’t work


If there’s one form of coping strategy that occupational therapists love, it has to be the idea of “pacing”. Of course, the concept of pacing is vexed: we don’t have a good definition that’s widely accepted so it’s difficult to know whether we’re doin’ it right, but the idea of chunking down the amount of activity carried out at any one time is widely used as one way for people to sustain activity involvement despite pain and fatigue.

Today I’m looking at an old paper (from 2016) where people with osteoarthritis (hip or knee) were given instruction in time-based activity pacing by an occupational therapist. Surprisingly, this was a three-arm randomised controlled study, where 193 people were randomised into tailored activity pacing, general activity pacing, or usual care. I say surprisingly because RCT’s are fairly rare in occupational therapy research in persistent pain, and nigh on impossible to get funding for (sigh).

The definition of pacing used in this study was “the regulation of activity level and/or rate in the service of an adaptive goal or goals” (Nielson, Jensen, Karsdorp & Vlaeyen, 2013) although the form of pacing offered by clinicians working in this field is still unclear. In this study, the “tailored” group underwent seven days of monitoring using an accelerometer, the results were downloaded, analysed and an individualised pacing plan developed by the therapists. The plan was intended to highlight times when the person had high or low levels of activity (as compared with their own average, and averages drawn from previous studies of people with the same diagnosis), and to point out associations between these activity levels and self reported symptoms. Participants were then provided with ideas for changing their activity levels to optimise their ability to sustain activity and minimise symptom fluctuation.

In the “general” pacing group, participants were given the same sorts of instructions, but instead of using objective data from their own activities, they were asked to recall their past situations and symptoms, and broad guidelines were given instead. Both groups had three sessions with comparable educational material.

In the usual care group, participants were instructed to carry on with their usual approach to activity, and were assessed at baseline, 10 weeks and six months, using the same assessment process as those in the experimental arms.

Outcome measures were fatigue, measured by the Brief Fatigue Inventory (Mendoza, Wang, Cleeland, Morrissey, Johnson, Wendt & Huber, 1999); and the 8-item PROMIS fatigue short form. Pain severity was measured using the pain subscale drawn from the WOMAC. Additional measures included the 6-minute walk test; the WOMAC physical disability short form scale; the Arthritis Self-Efficacy Scale; the CES-D depression measure, and various demographic and disease measures (joint space narrowing, osteophyte formation etc). Finally, to determine activity pacing adherence, the pacing subscale of the Chronic Pain Coping Inventory was used (Jensen, Turner, Romano & Strom, 1995).

What did they find?

Well, you may have guessed from the title of this post: although people given the pacing intervention said they benefited, and they changed the way they carried out daily activities, the results showed that although they did so, the only significant change on measures taken was for WOMAC pain, in which the people in the general pacing group reduced their pain over the first 10 weeks. BUT participants in the usual care group reduced their pain over six months!

What does this mean?

Should we all throw out the idea of paced activities? Should occupational therapists despair and go back to the drawing board?

I don’t think so, and here’s why.

I think targeting pain intensity is possibly the wrong outcome in a study like this. We already have a vast collection of studies showing that pain intensity and disability are not well-correlated. Pain intensity alone isn’t the main reason people stop doing things when they have osteoarthritis – it’s often fear that the pain signifies “bone on bone” and “wear and tear” and “cartilage disintegration” (Hendry, Williams, Markland, Wilkinson & Maddison, 2006). And we also know that people with osteoarthritis develop their own self-management strategies and that these focus on maintaining everyday social roles and valued activities (Morden, Jinks, Bie Nio, 2011). Values seem to help people engage in demanding activities, whether the demands are because the activities hurt, or they’re physically demanding, or they’re not our favourite thing to do (think vacuum cleaning when Mum is coming to visit!) (McCracken & Keogh, 2009).

Perhaps, by drawing attention to both activities and pain intensity, the therapists in this study created a situation where pain intensity became more salient to the participants. Perhaps, too, aiming to reduce pain doesn’t take into account the other values people may hold. For example, even if I’m sore I’ll rush around cleaning if I know my parents (or other visitors) are coming to visit. My pain intensity matters less than feeling embarrassed at an untidy house.

I think we need to revisit the aims of pacing activity. To me there are several reasons for having the strategy available when/if needed:

  1. If I want to work consistently at something that’s going to take a week or two to do. Example: I recently laid bricks under my cherry tree. I did this over three weekends because digging into really hard soil, heaving bags of sand, and placing the bricks is something that increases my pain quite a lot. Because I have other things to achieve over the weekend and during the week, and laying the bricks wasn’t a top priority, I chose to do about a metre square each day of each weekend.
  2. If I’m aiming to do something quite demanding – like go on a two-day tramp (hike). I’ll try to build my activity tolerance over similar terrain with similar loads in advance of the actual trip.
  3. If I really loathe the job and would otherwise avoid it… For example, vacuuming and mopping my floors. I’ll do a room at a time because I seriously do not enjoy housework!

Looking at activity management in isolation from what a person believes is important makes this strategy pretty unpalatable. Combine it with values, and we’re starting to see something that can be employed flexibly and when it’s workable.

 

Hendry, M., Williams, N. H., Markland, D., Wilkinson, C., & Maddison, P. (2006). Why should we exercise when our knees hurt? A qualitative study of primary care patients with osteoarthritis of the knee. Family Practice, 23(5), 558-567.

Jensen MP, Turner JA, Romano JM, Strom SE. (1995). The Chronic Pain Coping Inventory: development and preliminary validation. PAIN ;60, 203–16.

McCracken, L. M., & Keogh, E. (2009). Acceptance, mindfulness, and values-based action may counteract fear and avoidance of emotions in chronic pain: An analysis of anxiety sensitivity. The Journal of Pain, 10(4), 408-415. doi:http://dx.doi.org/10.1016/j.jpain.2008.09.015

Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK, Huber SL. (1999). The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer 85, 1186–96.

Murphy, S. L., Kratz, A. L., Kidwell, K., Lyden, A. K., Geisser, M. E., & Williams, D. A. (2016). Brief time-based activity pacing instruction as a singular behavioral intervention was not effective in participants with symptomatic osteoarthritis. Pain, 157(7), 1563-1573.

Morden, A., Jinks, C., & Bie Nio, O. (2011). Lay models of self-management: How do people manage knee osteoarthritis in context? Chronic Illness, 7(3), 185-200.

Nielson WR, Jensen MP, Karsdorp PA, Vlaeyen JW. (2013). Activity pacing in chronic pain: concepts, evidence, and future directions. Clinical Journal of Pain, 29, 461–8.

Persson, D., Andersson, I., & Eklund, M. (2011). Defying aches and revaluating daily doing: Occupational perspectives on adjusting to chronic pain. Scandinavian Journal of Occupational Therapy, 18(3), 188-197. doi:http://dx.doi.org/10.3109/11038128.2010.509810

One way of using a biopsychosocial framework in pain management – vi


I could write about a BPS (biopsychosocial) model in every single post, but it’s time for me to explore other things happening in the pain management world, so this is my last post in this series for a while. But it’s a doozy! And thanks to Eric Bowman for sharing an incredibly relevant paper just in time for this post…

One of the problems in pain management is that there are so many assessments carried out by the professionals seeing a person – but very little discussed about pulling this information together to create an overall picture of the person we’re seeing. And it’s this aspect I want to look at today.

My view is that a BPS approach provides us with an orientation towards the multiple factors involved in why this person is presenting in this way at this time (and what is maintaining their presentation), and by integrating the factors involved, we’re able to establish a way to reduce both distress and disability. A BPS approach is like a large-scale framework, and then, based on scientific studies that postulate mechanisms thought to be involved, a clinician or team can generate some useful hypotheses through abductive reasoning, begin testing these – and then arrive at a plausible set of explanations for the person’s situation. By doing so, multiple different options for treatment can be integrated so the person can begin to find their way out of the complex mess that pain and disability can bring.

The “mechanisms” involved range from the biological (yes, all that cellular, genetic, biomechanical, muscle/nerve/brain research that some people think is omitted from a BPS approach IS included!), to the psychological (all the attention, emotion, behavioural, cognitive material that has possibly become the hallmark of a BPS approach), and eventually, to the social (interactions with family, friends, community, healthcare, people in the workplace, the way legislation is written, insurers, cultural factors and so on). That’s one mess of stuff to evaluate!

We do have a framework already for a BPS approach: the ICF (or International Classification of Functioning, Disability and Health) provides one way of viewing what’s going on, although I can empathise with those who argue that it doesn’t provide a way to integrate these domains. I think that’s OK because, in pain and disability at least, we have research into each one of these domains although the social is still the most under-developed.

Tousignant-Laflamme, Martel, Joshi & Cook (2017) provide an approach to help structure the initial domains to explore – and a way to direct where attention needs to be paid to address both pain and disability.

What I like about this model (and I urge you to read the whole paper, please!) is that it triages the level of complexity and therefore the intervention needed without dividing the problem into “physical” and “psychosocial”. This is important because any contributing factor could be The One to most strongly influence outcome – and often an integrated approach is needed, rather than thinking “oh but the biological needs to be addressed separately”.

Another feature I like about this model is the attention paid to both pain and disability.

Beginning from the centre, each of the items in the area “A” is something that is either pretty common, and/or easily modified. So, for example, someone with low back pain that’s eased by flexion, maybe has some osteoarthritis, is feeling a bit demoralised and worries the pain is going to continue, has a job that’s not readily modified (and they’re not keen on returning) might need a physiotherapist to help work through movement patterns, some good information about pain to allay their worries, an occupational therapist to help with returning to work and sleeping, and maybe some medication if it helps.

If that same person has progressed to become quite slow to move and deconditioned, they’re experiencing allodynia and hyperalgesia, they have a history of migraine and irritable bowel, their sleep is pretty rotten, and they’re avoiding movements that “might” hurt – and their employer is pretty unhappy about them returning to work – then they may need a much more assertive approach, perhaps an intensive pain management programme, a review by a psychiatrist or psychologist, and probably some occupational therapy intervention at work plus a graded exposure to activities so they gain confidence despite pain persisting. Maybe they need medications to quieten the nervous system, perhaps some help with family relationships, and definitely the whole team must be on board with the same model of healthcare.

Some aspects are, I think, missing from this model. I’d like to see more attention paid to family and friends, social and leisure activities, and the person’s own values – because we know that values can be used to help a person be more willing to engage in things that are challenging. And I think the model is entirely deficits-based meaning the strengths a person brings to his or her situation aren’t incorporated.  Of course, too, this model hasn’t been tested in practice – and there are lots of gaps in terms of the measures that can be used to assess each of these domains. But as a heuristic or a template, this model seems to be practical, relatively simple to understand – and might stop us continuing to sub-type back pain on the basis of either psychosocial risk factors or not.

Clinicians pondering this model might now be wondering how to assess each of these domains – the paper provides some useful ideas, and if the framework gains traction, I think many others will add their tuppence-worth to it. I’m curious now to see how people who experience low back pain might view an assessment and management plan based on this: would it be acceptable? Does it help explain some of the difficulties people face? Would it be useful to people living with pain so they can explore the factors that are getting in the way of recovery?

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485