healthcare

Each time we face our fear, we gain strength, courage, and confidence in the doing – Theodore Roosevelt


I’m not certain Theodore Roosevelt actually said that – but who cares?! It’s a great statement. For the person living with persistent pain, though, it can be the last thing you want to hear. After all, it’s tough enough getting up and just doing the normal things let alone challenge yourself! So… how can a health professional help?

Let’s briefly recap. Self efficacy is the confidence I can do something successfully if I wanted to. It’s a robust predictor of many health behaviours including exercise, stopping smoking, eating healthily and coping well with persistent pain (Jackson, Wang, Wang & Fan, 2014; Williams & Rhodes, 2016). It was first introduced as a concept by Bandura as part of his theoretical model of behaviour change, and further discussed in an experimental study in a paper investigating systematic desensitisation processes, arguing that this approach to treatment created and strengthened expectations of personal efficacy (Bandura & Adams, 1977). Bandura argued that people develop a sense (expectation) of self efficacy from their own performance, watching others succeed, being persuaded by someone that yes indeed you have the skills to achieve, and also awareness of physiological arousal from which people can judge their own level of anxiety.

Self efficacy is more than a simple “general confidence” construct, however. It’s far more selective than this. For example, although I believe I can successfully dance in my lounge with no-one there and the curtains closed, this does not translate to me dancing on a stage on my own in the spotlights with an audience watching! Self efficacy refers to confidence to succeed and produce the outcome I desire in a given context – and that’s extremely important for pain management, and in particular, exercise for people experiencing pain.

How does self efficacy improve outcomes? There are at least two ways: (1) through the actions taken to manage or control pain (for example, gradually increasing activity levels but not doing too much) and (2) managing the situations associated with pain (for example, people with low self efficacy may avoid activities that increase pain, or cope by using more medication (Jackson, Wang, Wang & Fan, 2014).

To examine how self efficacy affects outcomes, Jackson and colleagues (2014) conducted a meta-analysis of papers examining this variable along with other important outcomes. Overall effect sizes for relationships between self efficacy and all chronic pain outcomes were medium and highly significant. This is really important stuff – we don’t find all that many studies where a single variable has this much predictive power!

As a moderator, the adjusted overall effect size (r=.50) of self efficacy and impairment was larger than the average effect sizes of meta-analyses on relations between disability and fear-avoidance beliefs, and pain as a threat for future damage and challenge for future opportunities. Self efficacy has stronger links with impairment than cognitive factors such as fear-avoidance beliefs and primary appraisals of pain (Jackson, Wang, Wang & Fan, 2014).  Age and duration of pain were the strongest moderators of these associations and suggest that reduced self-efficacy can become entrenched over time. In other words – as time passes, people experience fewer opportunities for success and begin to expect they won’t ever manage their pain well.

An important point is made by these authors: how we measure self efficacy matters. They found that self efficacy measures tapping “confidence in the capacity to function despite pain” had
stronger associations with impairment than did those assessing confidence in controlling pain or managing other symptoms.

Bolstering self efficacy – not just about telling people they can do it!

Given that self efficacy is domain-specific, or a construct that refers to confidence to do actions that lead to success in specified situations, here are a few of my questions:

  • Why are most people attending pain management programmes provided with gym-based programmes that don’t look at lot like the kinds of things people have to do in daily life? It’s like there’s an expectation that “doing exercise” – any exercise – is enough to improve a person’s capabilities.

    BUT while this might increase my confidence to (a) do exercise and (b) do it in a gym – but does it mean I’ll be more confident to return to work? Or do my housework?

  • How often are people attending gyms told to “push on”, or to “stop if it hurts”? And what effect does this have on people?

If their confidence is low, being told “just do it” is NOT likely to work. People need to experience that it’s possible to do things despite pain – and I think, to be able to handle a flare-up successfully. Now this is not going to happen if we adopt the line that getting rid of all pain is the aim, and that flare-ups should be avoided. If we want people to deal successfully with the inevitable flare-ups that occur, especially with low back pain, then we need to (a) be gentle, and grade the activities in an appropriate way (b) have some “ways of coping” we can introduce to people rather than simply telling them they can cope or reducing the demands (c) have other people around them also coping well (and that includes us health professionals)

  • Ensure we attribute change to the person, not to us.

That’s right: not to our sparkling personality, not to our special exercises, not to the machines we use, not to the techniques we have – you get the drift? Progress must be attributed to the person and his or her skills and perseverance. Because, seriously, all this arguing over which exercise regime is best doesn’t stack up when it’s actually self efficacy that predicts a good outcome.

And for case managers who may read this: just because someone has successfully completed an exercise programme, or a vocational programme with exercise as a component, this does not mean the person can manage successfully at work. Well, they may manage – but they may utterly lack confidence that they can. Context matters.

 

Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. Cognitive Therapy and Research, 1(4), 287-310.

Estlander AM, Takala EP, Viikari-Juntura E., (1998). Do psychological factors predict changes in musculoskeletal pain? A prospective, two-year follow-up study of a working population. Journal of Occupational and Environmental Medicine 40:445-453

Jackson, T., Wang, Y., Wang, Y., & Fan, H. (2014). Self-efficacy and chronic pain outcomes: A meta-analytic review. The Journal of Pain, 15(8), 800-814.

Williams, D. M., & Rhodes, R. E. (2016). The confounded self-efficacy construct: Conceptual analysis and recommendations for future research. Health Psychology Review, 10(2), 113-128.

Advertisements

The confidence that you’ll succeed if you try…


Self efficacy. It’s a word bandied about a lot in pain management, and for a group of clinicians in NZ, it’s been a shock to find out that – oh no! They’re not supporting self efficacy with their patients very much! It means “confidence that if I do this under these conditions, I’ll be successful”.

Self efficacy is part of Bandura’s social learning theory (click here for the Wikipedia entry) where he proposed that much of psychological treatment is driven by a common underlying mechanism: to create and strengthen expectations of personal effectiveness. Bandura recognised that we don’t always have to personally experiment through trial and error in order to learn. Self efficacy expectations were thought to develop from personal experience (let me do, and I’ll learn how); watching other people try (show me, and I’ll see if you succeed, then I’ll copy you); verbal persuasion that aims to convince that you have the capabilities to manage successfully (encourage me, let me know I can, and I’ll try); and how physiologically aroused or alert you are (if I feel confident inside, I’ll try but if I feel anxious or stressed I’m less inclined to) (Bandura, 1977).

Bandura and colleagues established that “different treatment approaches alter expectations of personal efficacy, and the more dependable the source of efficacy information, the greater are the changes in self-efficacy.” (Bandura & Adams, 1977, p. 288). The conclusions drawn from this mean that treatments where people DO and succeed are more effective at enhancing their belief in self efficacy, while watching others, or being told how to do something are far weaker at building this effect.

Bandura began working on this theory while pondering how psychological treatments, particularly for systematic desensitisation or graded exposure, generated their effects. Systematic desensitisation aimed to reduce arousal levels and thus avoidance while being in a relaxed state – therefore the person is exposed to increasingly “aversive” stimuli (stimuli you want to avoid) while remaining calm and relaxed. Bandura thought that there were other factors involved in avoidance behaviour, developing his theory that expectations of negative consequences alone can generate fear and defensive behaviour and that this isn’t necessarily reflected in autonomic arousal and actions. Bandura hypothesised that reducing physiological arousal improved performance not by eliminating a drive to escape – but instead by increasing the confidence that the person can successfully manage the situation.

For parents, the idea that if you believe you can do what you set out to do, is embodied in the little book “The Little Engine That Could” (Piper, 1930/1989). Remember? The little engine that couldn’t because all the bigger engines said so, but then tried and tried and believed he could – and he did!

So, what does this have to do with pain management?

Let’s paint a scenario. Allan comes to see a hands-on therapist because he has a sore back. He believes that hands-on therapy is the thing, because others have said it’s really good. He goes, gets his treatment and wow! Things improve! The next time he has a sore back (because, you know, it almost always comes back) what does he do? Well, on the basis of his past experience, he heads to his hands-on therapist, because he’s confident this will help his pain. The problem is, his therapist has moved town. He’s a bit stuck now because in his town there are not many therapists doing this particular kind of treatment – what does he do? He doesn’t believe that anyone else can help, and he has no belief that he can manage by himself. He has little self efficacy for managing his own back pain.

Self efficacy is not about whether a person can do certain movements, it’s about believing that the person can organise skills to achieve goals within a changing context – not just what I will do, under duress, but what I can do, what I’m capable of doing, and what I say I’ll probably do.

Self efficacy is not a belief that a specific behaviour will lead to a certain outcome in a certain situation, it’s the belief that I can perform that behaviour to produce the outcome.

So, self efficacy isn’t a generalised attitude – it’s a specific belief about certain actions, certain outcomes in certain situations. It’s not a personality trait like hardiness, or resilience, or general confidence or self-esteem, it’s about being confident that I can generate a solution to a problem in a particular part of my life.

The times when we’re least confident are often when we’re facing a new experience, or we’ve had a bad experience previously. Particularly if we’ve seen other people fail at the same thing, or succeed but do so with much fear and loathing. In the case of pain, there are ample opportunities to have a bad experience in the past, and to learn from other people around us that – oooh back pain is something to be afraid of, and you can’t manage it alone – you need to get help from someone else. Consequently, many people have very low self efficacy for successfully dealing with a bout of low back pain.

And health professionals: we can foster this.

How? By implying that success is due to what we do, rather than being a natural process of recovery. By suggesting it’s something about our “magic hands” or pills, or injections or surgery or special exercises, or “using the core correctly”. In doing so, we’re generating a belief that the person cannot manage alone. That it’s not what the person does, but the magic hands, pills, injections, surgery, special exercises or using the core…

Damush, Kroenke, Bair, Wu, Tu, Krebs and Poleshuck (2016) found that self management approaches to pain increase self efficacy, self management actions, and reduced pain intensity and depression in a group of community patients with chronic musculoskeletal pain and depression. A typically tough group to work with because confidence to succeed at anything is pretty low in depression. Self management aims to ensure the credit for recovery lies with the person doing things that help – creating and supporting a belief that the person has the capability to successfully manage their situation. The techniques? Simple strengthening and stretching exercises, progressive muscle relaxation, and visualisation, in a group setting. Strategies that typically don’t need technology, but do provide support. Information about the natural history of recovery was included – so people were given realistic and optimistic information about their recovery, whether it meant pain reduction, or not. The usual goal setting, problem-solving, and positive self talk were encouraged, and people set goals each week to achieve – maybe based on something from the session, or something the person wanted to do for themselves.

This is not a high-tech approach. This is simple, straightforward pain management as it has been done for years (right back as far as the mid-1970’s and Sternberg!). And through it, these people become increasingly confident that they could successfully manage their own mood and pain independently. As a business model it’s probably not the best for repeat business – but oh how good for those participants who could go away and live their lives without having to think of themselves as patients.

More on self efficacy in the next couple of weeks – we can help people to become confident that they can succeed at managing their pain if it should happen again.

 

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review,  84, 191-215.

Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. Cognitive Therapy and Research, 1(4), 287-310.

Damush, T., Kroenke, K., Bair, M., Wu, J., Tu, W., Krebs, E., & Poleshuck, E. (2016). Pain self‐management training increases self‐efficacy, self‐management behaviours and pain and depression outcomes. European Journal of Pain, 20(7), 1070-1078.

Maddux, J. E. (2016). Self-efficacy Interpersonal and intrapersonal expectancies (pp. 55-60): Routledge.

Managing sleep problems – a medication-free approach (iv)


The fourth step in learning to sleep well within an ACT framework, is build. My previous posts were: Discover and Accept and Welcome.

In build, we’re beginning to build new practices. This is about learning how much sleep you need, and when you need to head to bed and wake up again.

I know when I had trouble sleeping at night (I refused to call it insomnia, but it most definitely was!), I thought I’d tried everything to help. I had used all the sleep hygiene strategies like no devices in bed, no TV in bed, do some relaxation as I lay down, have a regular bed-time and wake-up time – and one of the things I tried to do was eliminate coffee after lunchtime. While most of the time coffee isn’t a problem for me, I learned that when I was vulnerable to not sleeping, coffee and similar substances (including chocolate and alcohol) were not good for me. And today I still don’t drink coffee after lunch and limit myself to three or so cups a day.

So… what’s different about ACT and this stage of learning to sleep again?

Well, people with pain often talk about being interrupted by their pain – of waking up in the middle of the night because of pain and then not being able to get back to sleep. While there is some truth to the idea that we wake because of pain, in fact we all wake up over the course of a night. You’ll know the typical “sleep architecture” (click here for a nice explanation) where we fall into a deep stage of sleep fairly soon after heading to bed, and that we have periods of REM or rapid eye movement sleep (dreaming sleep) at regular intervals over the night. What you may not be as aware of is that in the periods just before and just after REM sleep, we’re actually awake. Not very awake – but awake enough to roll over and get comfy again. If your bladder does what mine does, I usually have a quick trip to the loo around 2.30ish, and go right back to sleep again.

When you have pain, chances are greater than you are more aware of those lighter periods of sleep and, like I do with my bladder, notice that you are awake. If you then start noticing your pain… or your worries… or your mind starts dropping comments to you, then it’s possible you’ll stay awake. Partly this is because the biological drive to fall into a deep sleep at the beginning of the night has been partly satisfied. Partly also because experiences like pain are very salient or important. So are noises (the cry of a baby, that tapping sound on the window, the car roaring down the road) and during the lighter periods of sleep we’re more likely to wake fully rather than just roll over. We’re not actually waking more often as much as waking more fully, and perhaps for longer than normal.

Building new patterns means some basic “rules” – but rules that are held lightly. In other words, it’s fine to change things up a little from time to time (after all, birthdays, travel, having a cold, or getting a puppy are all things that can disrupt sleep), but broadly these things seem to be habits of good sleepers:

  1. Heading to bed around the same time-ish each night (or within 20 – 30 minutes of this time). Same applies to waking up – and to help you wake, an alarm clock (I do use my phone for this), and in winter, I use a bright SAD light, and bump up the temperature on my electric blanket. Light and warmth both tend to make you wake up a bit more quickly, so it’s helpful for me during winter when I have seasonal affective disorder (winter depression).
  2. Knowing that it’s normal to take around 10 – 15 minutes to fall asleep, and being OK with this.
  3. Changing how long you sleep for will take a few weeks – it’s a habit! So don’t go changing your bedtime or wakeup time too often. If you’re using sleep restriction (going to bed a little later than normal, perhaps getting up a little earlier) you can return to a more “normal” length as part of fine-tuning how long you need to sleep for your needs. But, don’t change things too often!
  4. If you have a late night out (or if you’re travelling over a time zone or two), try to get up at your usual time. Yes, this means keeping the same wake time over the weekends as the week days!
  5. Develop a kind of “wind down” habit – but again, hold this lightly because sometimes there are enjoyable events on late, or you have people visiting, that may mean you’re a little more alert than normal. But on the whole, basically spend around 30 – 45 minutes giving your mind signals that you’re heading to bed. This means cleaning your teeth, checking the doors, stopping watching TV or going on devices, maybe get into your jimjams (PJs!) and heading to bed with a book or magazine.
  6. When you’re in bed, just quietly lying there, letting thoughts wander in and out without getting caught up in the content, and you’ll notice yourself quietly falling asleep. This is totally normal. If you do get caught up in your mind chatter, as soon as you notice you are gently bring your attention to your breathing and the sensations of lying in bed, and this should (at this point in your journey) help you fall asleep.

You can see it’s not too different from what I hope you’ve been practicing all along – just that instead of fighting with those thoughts, or getting all tangled up in them, you’ve got skills to let them go, and just be there in the darkness, resting.

There are a lot of specific issues you may also encounter – things like your partner who snores like a chainsaw, or twitches all night long (I’m the guilty party here!); or when you have a cold or a stuffy nose – the former might take a little longer to deal with, but the latter is usually just for a week or so and I tend to be happy using decongestants just for those few nights when I cannot breathe…. As for the partner noise or twitching, like dealing with your thoughts this is probably about you dealing with your thoughts about the noise or twitching! Again, try welcoming or being willing to listen to or feel those habits. Making some room for them rather than getting caught up in thoughts of smothering him or her! And go back to your usual mindfulness practice.

Finally – the last step is living! We tend to put life on hold when we try to control rotten sleep patterns.  Now it’s time to know that while sleeping badly can come again from time to time, you have skills to roll with it – you know you can manage if you avoid fighting with it or trying to control it. Take those steps to build your new sleep habit, and go out there and DO again!

 

Managing sleep problems – a medication-free approach (ii)


Last week I described the “conventional” CBT for insomnia approach (CBTi), but this week I want to introduce an Acceptance and Commitment Therapy (ACT) approach which is superficially similar to CBTi but holds to some of the fundamental principles of ACT: mindfulness, and letting go of control. As is typical for ACT, there are no hard and fast absolutes and instead there is a focus on workability – what works, in context.

Most of the content of today’s post is drawn from my personal experience and The Sleep Book by Dr Guy Meadows. There are five basic steps and according to the book it should take five weeks to get sleep sorted. I’m not as convinced about timeframes, so I’ll describe it as five steps.

  1. Discover: this step is about discovering what triggers and maintains insomnia, and focuses on why struggling to start sleeping is counter-productive. That’s right – stop struggling!
  2. Accept: well, with a name like ACT you’d expect some acceptance, right? This is not about resigning yourself to nights of poor sleep, but rather a willingness to let go of the struggle, to be fully present in the now – rather than reminiscing about the past, or predicting the future.
  3. Welcome: everything that shows up in your mind and body (after all, they’re there whether you want them or not!).
  4. Build: a new sleeping pattern by identifying how much sleep you need and when you need it.
  5. Live: during the day and sleep during the night!

Like absolutely any behaviour change, this process is not always easy! It takes persistence, courage and doing things that may not feel like sensible things to do! Let’s begin.

Discover: we do a whole heap of things to try to get to sleep – normal sleepers don’t. Normal sleepers just put their heads on the pillow, maybe let their minds wander over the day, and then gently fall asleep. When people with insomnia try to sleep, we try all manner of things to get to that state – and many of those things either prolong the sleeplessness, or actually wind it up!

Meadows describes four factors associated with the start of insomnia:

  • risks which may be getting older, being female, being a worrier or depressed, having a family history of rotten sleep, maybe being generally full-on;
  • triggers may include life stress, some medical conditions like irritable bowel or a fracture and yes, pain, and medications or alcohol, time zone changes and so on;
  • arrivals are memories, thoughts, sensations, emotions and urges that come to visit when we’re trying to get off to sleep but can’t – and these are partly the fight, flight or freeze response which happens when we begin worrying, or are part of the triggers (and we often think it’s those things that need to be got rid of); and finally
  • amplifiers, or things that are meant to be helping reduce insomnia but can actually make it worse: things like spending longer in bed, sleeping in, going to be earlier, having naps – and oddly enough, some of the things we’re traditionally advised to do to help us sleep. Things like reading in low light, having a warm bath or warm milk drink, watching TV, listening to the radio, playing with devices like the phone…. Even some of the things we do because we’re not sleeping – like getting out of bed and doing things like checking emails, doing some exercise, going to the loo – all of these things are done to try avoid the chitter-chatter of our mind, or eat least to control or distract from it, yet can paradoxically train your brain to be awake right when you really want to sleep… even things like keeping the room dark, wearing earplugs, doing relaxation, sleeping in a different bed from your partner, trying a new mattress or pillow can be a step too far and train your brain to think controlling these thoughts about sleep is the Thing To Do.

I’ll bet that, like me, most people have done all these things – and some of them are part of CBTi. There is a place for them in moderation – but it’s even better to develop the skill of not being caught up in trying to control our thoughts, worries, feelings, body sensations when we’re heading to sleep.

Now I’m sure this is where people are going “yeah but…” and giving a whole list of why your situation is different. Would you be willing to keep reading and look at some alternatives?

The risk of trying to control these arrivals and amplifiers is that while they don’t work, it’s too scary NOT to do them. Your brain learns, as a result, that sleep is a problem. And what does the brain like best? Oh that’s right – solving problems. Except that if you’ve ever tried to “make yourself” stop thinking, or feeling – have you noticed that you just can’t? Try it now: try and make yourself feel happy. Yeah… you either have to recall something enjoyable from the past, or anticipate something in the future. And while you’re doing that, your brain is cranking up. It’s worse if you try to stop yourself from thinking or worrying because that old fight, flight or freeze response kicks in and up goes your heart rate and perspiration and breathing…

So the first step of this programme is to discover all the things you’re doing to control the uncontrollable. We can’t stop feelings, thoughts, memories and so on from arriving. They just do. So fighting with them and trying hard to get rid of them just does not work – they’re there AND you’re feeling stressed because you can’t get rid of them!

Click to the next post

Clinical reasoning – and cognitions


Possibly one of the most hotly discussed aspects of clinical reasoning and pain relates to thoughts and beliefs held by both people experiencing pain and the clinicians who work with them. It’s difficult to avoid reading papers about “pain education”, “catastrophising”, “maladaptive thinking”, but quite another to find a deeper analysis of when and why it might be useful to help people think differently about their pain, or to deal with their thoughts about their experience in a different way.

Cognition is defined by the APA Dictionary of Psychology as

1. all forms of knowing and awareness, such as perceiving, conceiving, remembering, reasoning, judging, imagining, and problem solving. Along with affect and conation, it is one of the three traditionally identified components of mind.

2. an individual percept, idea, memory, or the like. —cognitional adj. —cognitive adj.

Cognitions are arguable The Thing most accessible to ourselves and most distinctive about humans – indeed, we call ourselves “homo sapiens” or “wise man” possibly because we can recognise we have thoughts! Although, as you can see from the definition above, many aspects of cognition are not as readily available to consciousness as we might imagine.

From the early days of pain management, explanations about the biology of pain have been included. Indeed, since 1965 when Melzack and Wall introduced the Gate Control Theory, in which modulation and descending control were identified, clinicians working in pain management centres have actively included these aspects of pain biology as part of an attempt to help people with pain understand the distinction between hurting – and being harmed (see Bonica, 1993).

The purpose behind the original approaches to “explaining pain” were to provide a coherent explanation to people in pain as to the “benign” nature of their experience: in other words, by changing the understanding people held about their pain, people were more likely to willingly engage in rehabilitation – and this rehabilitation largely involved gradually increasing “up time” and reducing unhelpful positions or activity levels. Sound familiar? (see Moseley & Butler, 2015).

Of course, in the early days of pain management, specific relationships between thoughts and both automatic and volitional behaviour were unclear. What we know now is that if I wire someone up to a biofeedback machine, measuring say heart rate variability, respiration and skin conductance, and then I mention something related to the person’s appraisals of their pain – maybe “Oh this really hurts”, or “I don’t think I’ll sleep tonight with this pain” those parameters I’m measuring will fluctuate wildly. Typically, people will experience an increase of physiological arousal in response to thinking those kinds of thoughts. In turn, that elevated arousal can lead to an increased perception of pain – and increased attention to pain with difficulty taking attention off pain (see Lanzetta, Cartwright-Smith & Eleck, 1976; Crombez, Viane, Eccleston, Devuler & Goubert, 2013).

So, the relationship between what we think and both attention to pain and physiological response to those thoughts is reasonably well-established, such that if someone reports high levels of catastrophising, we can expect to find high levels of disability, and reports of higher levels of pain. So far, so good. BUT how do we integrate these findings into our clinical reasoning, especially if we’re not primarily psychologically-oriented in our treatments?

The answer has been to dish out “pain education” to everyone – giving an explanation of some of the biological underpinnings of our experience. But for some of our patients this isn’t useful, especially if they have already heard the “pain talk” – but it has only hit the head and not the heart.

As Wilbert Fordyce was known to say “Information is to behaviour change as spaghetti is to a brick”. In other words – it might hit the brick and cover it, but it doesn’t change the brick, and neither does it move the brick!

You see, cognitions are not just “thoughts”, nor thoughts we are consciously aware of. Cognitions include implicit understanding, attention, the “feeling of what it is like to” and so on. And as occupational therapists and educators have found over the years, experiential learning (learning by doing) is one of the most powerful forms of behaviour change available (Kolb, 2014). People learn by experiencing something different. This is why cognitive behavioural approaches such as Acceptance and Commitment Therapy (ACT) so strongly endorse experiential elements.

Rather than attempting to change someone’s head knowledge of pain=harm, it might be more useful to help them experience doing something different and help them explore and generate their own conclusions from the experience.

I think both occupational therapists and clinicians who provide opportunities for movements and experiences (such as massage therapists, physiotherapists, osteopaths, chiropractors, myotherapists etc) are in an ideal position to guide people through new experiences – and then help them explore those new experiences. Rather than telling people what to think or believe (especially amongst those folks who are unconvinced by “book learning”!) we’re in a good position to help them work out what’s going through their minds – and what it feels like to do something differently. Instead of convincing, we can help people ponder for themselves. This is the essence of graded exposure: going from “OMG I can’t do that!” to “Oh yeah, I can master this”. It’s the difference between reading about how to ride a bicycle – and actually getting on a bike to learn to ride.

I agree that cognitive processes are really important in understanding a person’s experience of pain. I think, though, we’ve focused on overt thoughts to the detriment of trying to understand other aspects of cognition. We need to spend some more time exploring attention and distraction from pain; memories and how these influence pain; and to examine some of the implicit features of our understanding – and instead of approaching changes to thinking/understanding via the hammer of information dumping, maybe we can ponder the opportunities that arise from helping people experience something different and new.

 

 

Bonica, J. J. (1993). Evolution and current status of pain programs. Journal of Pharmaceutical Care in Pain & Symptom Control, 1(2), 31-44. doi:10.1300/J088v01n02_03

Crombez, G., Viane, I., Eccleston, C., Devulder, J., & Goubert, L. (2013). Attention to pain and fear of pain in patients with chronic pain. Journal of Behavioral Medicine, 36(4), 371-378.
Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development (2nd Ed), Pearson Education: New Jersey.
Lanzetta, J. T., Cartwright-Smith, J., & Eleck, R. E. (1976). Effects of nonverbal dissimulation on emotional experience and autonomic arousal. Journal of Personality and Social Psychology, 33(3), 354.

Moseley, G. L., & Butler, D. S. (2015). Fifteen years of explaining pain: The past, present, and future. Journal of Pain, 16(9), 807-813. doi:10.1016/j.jpain.2015.05.005

Teamwork: Gaps or overlaps?


For many years now, interprofessional/multidisciplinary teams have been considered the best model for delivering pain management. This stems from studies conducted right back as far as J J Bonica in 1944 (Bonica, 1993), and originally referred to teams consisting of several medical specialties. Bonica later initiated a multidisciplinary/interdisciplinary pain programme in 1960, including 20 people from 14 medical specialties “and other health professions”. In 1977, Bonica and Butler classified pain programmes into five groups – major comprehensive multidisciplinary programmes – more than six disciplines and involved in education and research; comprehensive multidisciplinary – four to six disciplines and involved in education and research; small multidisciplinary – 2 or 3 disciplines; syndrome-oriented specialising in single diagnoses; and modality-oriented using a single treatment. There were, at the time, 327 facilities around the world – including New Zealand (The Auckland Regional Pain Service).

Bonica didn’t comment on the team structure of these facilities, nor on the mix of “other health professions” involved. There has been a significant reduction in the numbers of comprehensive pain management centres, particularly in North America since the 1990’s. Fragmented, unidimensional treatment seems to be far more common than integrated multidimensional approaches.

Why might teamwork and structure of teams be important in pain management?

I like this discussion of why interprofessional/interdisciplinary teams might be more effective in pain management than multidisciplinary: “Multidisciplinary teams are unable to develop a cohesive care plan as each team member uses his or her own expertise to develop individual care goals. In contrast, each team member in an interdisciplinary team build on each other’s expertise to achieve common, shared goals. Therefore, it is crucial to indicate that multidisciplinary teams work in a team; whereas, interdisciplinary teams engage in teamwork.”

The argument for interprofessional teams in pain management is that by drawing on a common model of pain, each profession can align their treatments to meet the person’s goals, using a common framework, language and broad principles. But, and it’s a big but, this model depends on mutual trust, respect and time spent together developing a common understanding of each team member’s contributions. This is not something in which many health professionals have much training. For a good discussion of ways to foster good dynamics, Youngwerth and Twaddle’s 2011 paper is a nice place to start.

Why write about this now?

I was prompted to write about this because of a set of questions I was posed by a group of clinicians from another profession. We ostensibly work in a team, under the ACC Pain Contracts which specify a “multidisciplinary” approach. The questions, however, reflected both a lack of knowledge about pain management group programmes, and a lack of respect for the clinical skills provided by the people who deliver the programme I’ve developed. And it’s not the first instance of such behaviour.

I rarely criticise New Zealand healthcare policy, at least not on the pages of this blog. In this instance, though, I think it’s time to point out some of the issues that are present in the way pain contracts are being delivered since late 2016.

For those who’re not aware, ACC is NZ’s only personal injury insurer, owned by the country, with no-fault, 24 hour cover. That means anyone who has an accidental injury in NZ firstly can’t sue, and secondly has their treatment and rehabilitation paid for. Like most personal injury insurance companies, ACC’s main problem is the burden of long-term claims where often the main issue preventing return to work and case closure is persistent pain. As a result, pain services have been provided under ACC rehabilitation policy under a “provider-funder split” model since 2000.

ACC contracts providers to deliver pain management services. These services were to involve a number of designated professions, and these professionals were to be at least two years post-graduation, and to have completed postgraduate education in pain and pain management. And no, I don’t think a weekend course counts as “postgraduate education”. Unfortunately, the remuneration under these contracts is incredibly low. Remuneration rates are pre-determined by ACC, so that occupational therapy and physiotherapy are given one hourly rate, psychologists have a higher rate, and medical practitioners have the highest rate of all. There’s no variation in rates to fund experienced clinicians, so everyone gets the same amount irrespective of skill level. There is little to no allowance for team meetings, and there’s no allowance for screening or reporting included in the funding for the group programme I’ve developed.

Aside from the low funding, there are other concerns for me. There has been no auditing of the providers delivering these services. As a result, large businesses naturally try to maximise profit, employing entry-level clinicians for the contracts. Incredibly challenging for new graduates who have had limited exposure to persistent pain and pain management, and often apply acute pain management principles to chronic conditions. And that risks prolonging disability and exacerbating distress of people needing help.

Secondly, because these are new contracts, with quite different requirements from earlier iterations, groups have had to recruit a great many clinicians. Some of those clinicians presumed, I think, that their professional qualification is sufficient to work with people who have persistent pain. Even if their training had no pain content. ACC considers professional registration to be quite sufficient to practice in this area. While some of these clinicians are very experienced – pain management is not simple, and it is specialised. I have heard of practitioners continuing to use gate control theory as their primary “pain education”. While it’s an advance on being told you have “somatic disorder”, it doesn’t exactly reflect modern pain concepts. Again, using outdated information risks prolonging disability and exacerbating distress in a group of vulnerable people.

Teams to deliver pain contracts were often assembled in haste. Processes of induction, continuing education, developing a common clinical model, knowledge of other professionals’ contributions have all suffered as a result. Multidisciplinary practice is the norm – as one person I know used to put it, it’s “serial monotherapy”. Decision-making processes haven’t been developed, and integrating a clinical model common to all – and therefore abolishing a hierarchical structure – has just not happened. Instead a hierarchical, patch-protecting, and disjointed model where professionals are pitted against one another to gain some kind of dominance is emerging. A far cry from a mutually-respectful, integrated, non-hierarchical interprofessional team environment that research suggests is best for delivering pain management (Gatchel, McGeary, McGeary & Lippe, 2014).

When high value, low cost treatments for persistent pain are under-funded, and when costly yet ineffective treatments such as surgery continue being delivered, it’s the people who most need help who are harmed. I suppose what’s even more concerning is that despite 1 in 5 NZers living with pain lasting more than three months, and ACC claimants representing a small proportion of those living with pain, there is no New Zealand strategy for chronic pain management. People on ACC are, in most ways, rather lucky despite the failings of this contracting system.

The pain contracts could have represented an opportunity for innovation and an expansion of understanding between professions, what has happened instead is a tendency to deliver formulaic, ritualised programmes with gaps and overlaps, as a result of underfunding, poor quality control and both ignorance and power play in some instances.

We used to be world leaders in pain management. We have failed to capitalise on our headstart.  We should do better. We must do better for people living with pain.

 

Bonica, J. J. (1993). Evolution and current status of pain programs. Journal of Pharmaceutical Care in Pain & Symptom Control, 1(2), 31-44. doi:10.1300/J088v01n02_03

Gatchel, R. J., McGeary, D. D., McGeary, C. A., & Lippe, B. (2014). Interdisciplinary chronic pain management: past, present, and future. American Psychologist, 69(2), 119.

Youngwerth, J., & Twaddle, M. (2011). Cultures of interdisciplinary teams: How to foster good dynamics. Journal of Palliative Medicine, 14(5), 650-654.

When it hurts – but it’s important to keep doing


To date, despite years of research and billions of dollars, there is no satisfactory way to reduce pain in all people. In fact, our pain reduction treatments for many forms of persistent pain are pretty poor whether we look at pharmaceuticals, surgery, psychological treatments or even exercise. What this means is there are a lot of disillusioned and frustrated people in our communities – yet life carries on, and people do keep doing!

In an effort to understand what might help people who don’t “find a cure”, researchers and clinicians have been looking at mediators. Mediators are factors that explain a relationship between two variables. In the study I’m examining today, the predictor is pain intensity, and the criterion variable is participating in valued life activities (the things we want or need to do). The research question was whether self-efficacy and/or pain acceptance mediated engaging in valued life activities.

Ahlstrand, Vaz, Falkmer, Thyberg and Bjork (2017) used a cross-sectional study to explore relationships between the variables above in a group of people with rheumatoid arthritis (RA), drawn from three rheumatology registers in South East Sweden. Participants were required to have confirmed RA; be between 18 – 80 years; have had RA for four years or more; and have data included in the quality register – a total of 737 people agreed to take part (from a total of 1277 meeting entry criteria).

The researchers used the Swedish versions of Health Assessment Questionnaire (Wolfe, 1989) to establish degree of difficulty in daily activities, as well as the Valued Life Activities scale (Katz, Morris & Yellin, 2006); the Arthritis Self-Efficacy Scale (Lorig, Chastain, Ung, Shoor & Holman, 1989); and the Chronic Pain Acceptance Questionnaire (Wicksell, Olsson & Melin, 2009).
The statistical analyses included Chi-square tests of independence to identify significant differences in categorical factors due to gender, and steps were taken to establish whether there were gender differences for pain acceptance, self-efficacy and valued life activities. Pearson correlations were used to explore the relationships between acceptance, self efficacy and the valued life activities summary score, and then univariate regressions were undertaken to test each individual factor (eg pain, pain acceptance and self efficacy on valued life activities). Then, only the significant contributors in univariate analyses where entered into the hierarchical linear regression models. The tests were to establish whether self-efficacy would predict valued life activities after acceptance and pain scores were considered.

Finally, structural equation modelling was used to examine the contribution and influence of pain, activity engagement and self-efficacy on difficulties performing valued life activities. A note here: The authors used the structure of the ICF model to name the constructs in their structural equation model.

What did they find?

The people who responded to this survey tended to be less active than those who were on the registers but didn’t respond, so we need to keep this in mind when we interpret their results. They found that women reported slightly more pain than men, but there were no differences between men and women on all measures except that men scored more highly on the symptom control subscale of the self-efficacy measure. A point to note here is that, unlike the Pain Self Efficacy Questionaire, this measure includes attempts to reduce or control pain and/or disability, so it’s a slightly different construct from the PSEQ which measures confidence to engage in doing things despite the pain.

In terms of pain, pain acceptance, and arthritis self-efficacy, there were low to moderate associations between these and engaging in valued life activities. In fact, all pain acceptance and self-efficacy constructs measured in this study were associated with performing valued life activities. In other words, when people are confident, and willing to do things and engage in activities despite pain, the more valued activities they actually do. In fact, one of the more striking findings was a negative relationship between activity engagement and performing valued life activities – those with lower activity engagement scores reported great difficult engaging in what was important to them (not especially surprising given that both scales are about doing what’s important and getting on with life).

Now for the really geeky model: structural equation modeling found a rather complex relationship between all the variables – so complex I’m going to include the diagram.

What does it show? Well, there’s a relationship between pain intensity and valued activity engagement – the more pain, the less people do what’s important. BUT this is mediated by “personal factors” (remember the ICF labels). These personal factors are the pain acceptance activity engagement, self-efficacy for pain and self-efficacy for symptoms. Interestingly, pain willingness, the other subscale on the pain acceptance scale, wasn’t correlated.

Or is it surprising? To my mind there are some interesting conceptual issues with this study. Firstly, in a group that is self-selected and represents slightly more disability than those who didn’t respond, it’s not surprising that pain intensity and disability were correlated. This is something we see often pre-treatment in chronic pain settings. It’s also no surprise to me that the Arthritis self-efficacy scales were associated with valued activities, and with activity engagement – the arthritis self-efficacy scales ask “How certain are you that you can decrease your pain quite a bit?”; “How certain are you that you can that you can make a small-to moderate reduction in your arthritis pain by using methods other than taking extra medication?” amongst other questions. These suggest that pain reduction is a primary aim in arthritis management. The Chronic Pain Acceptance Questionnaire, however, is a very different beast. The Activity Engagement scale is about doing things that are valued (similar to the Valued Life Activity scale), while the  Willingness scale is about being willing to live life again despite pain – for example “I am getting on with the business of living no matter what my level of pain is.”; “It’s not necessary for me to control my pain in order to handle my life well.”.

While the authors argue that this study shows the value of self efficacy, stating “Active management promotes a sense of confidence, or self-efficacy, for dealing with pain that is associated with improved participation in daily activities and wellbeing.” I think the Arthritis Self-Efficacy Scale’s focus on controlling pain and other symptoms is incompatible with the constructs implied in the CPAQ. The ACT (Acceptance and Commitment Therapy) approach to pain is, as I’ve mentioned many times, a focus on engaging in valued activities irrespective of pain intensity – a more achievable goal for many than becoming confident to reduce pain as the ASES measures.

To their credit, the authors also indicate that men and women who continue to experience pain despite optimal medical treatment might benefit from strategies to increase their confidence to manage their own symptoms – but that a focus on pain control instead of participation despite pain is probably unhelpful. They go on to say that “by focusing on pain aceptance and activity engagement despite pain, self-management strategies may change the focus from pain control to a more flexible engagement in valued activities.” I couldn’t agree more – and I wish they’d used the Pain Self Efficacy Questionnaire instead of the ASES in this study. Maybe we need more discussion about appropriate measures in rheumatology research.

 

Ahlstrand, I., Vaz, S., Falkmer, T., Thyberg, I., & Björk, M. (2017). Self-efficacy and pain acceptance as mediators of the relationship between pain and performance of valued life activities in women and men with rheumatoid arthritis. Clinical Rehabilitation, 31(6), 824-834. doi:10.1177/0269215516646166

Katz PP, Morris A and Yelin EH. (2006). Prevalence and predictors of disability in valued life activities among individuals with rheumatoid arthritis. Annals of Rheumatology Diseases. 65: 763–769.

Lorig K, Chastain RL, Ung E, Shoor S and Holman HR. (1989). Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis & Rheumatism, 32(1): 37–44.

Wicksell RK, Olsson GL and Melin L. (2009). The Chronic Pain Acceptance Questionnaire (CPAQ)-further validation including a confirmatory factor analysis and a comparison with the Tampa Scale of Kinesiophobia. European Journal of Pain, 13: 760–768.

Wolfe F. (1989). A brief clinical health assessment instrument: CLINHAQ. Arthritis & Rheumatism,  32 (suppl): S9

Do pain management programmes really influence “doing” in daily life?


Disability and coping are two of the most important targets in persistent pain management, along with distress and pain intensity (the latter perhaps being the most difficult to influence). A question, however, is whether existing measures of disability truly capture the activities or occupations that people most value. For example, if house cleaning is just not my thing, even if my functioning improved over the course of a programme, would I choose to spend that new capability on vacuum-cleaning or out there in the garden?!

The Westhaven-Yale Multidimensional Pain Inventory (MPI)(Kerns, Turk & Rudy, 1985)  is a true workhorse of pain management measurement: It’s a measure that provides, via the subscales, an estimate of the complex inter-relationships involved in pain-related disability and distress. Three profiles of coping approach have been derived from the MPI indicating “Adaptive Coping” – the person is likely to continue to improve and engage in living well if they carry on as they are; “Interpersonally Distressed” – the person is experiencing difficulties with relationships and is feeling unsupported by others around them; and “Dysfunctional” – the person is struggling with their pain, and both disability and distress can feel overwhelming.

But the disability components of the MPI don’t really indicate the kinds of activities that people might be passionate about – or those that are relevant to their lives. The items are about general activities people “typically” do – in a North American setting. I know they’ve been validated in many different populations but they still represent a general idea of activity and function rather than the unique and idiosyncratic occupations that people do. (What's the difference? An occupation is the unique way I perform the important tasks of my day - the way I dash around the house while simultaneously cleaning my teeth, getting the dogs outside, making sure the curtains are opened and the appliances off just before I head out the door! We could call this "getting ready for work" but the way I do it, and the way you do it is probably very different!)

Why is that important? Well, because people value different occupations differently, and because values drive motivation, a broad measure of disability may not capture the true value of a pain management programme. And this is why the Canadian Occupational Performance Measure (COPM) (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990) is often used by occupational therapists to establish exactly what it is a person wants to be able to do. Goal Attainment Scaling is another option.

The study

In this study by Persson, Eklund, Lexell & Rivano-Fischer (2017), the aims were to assess longterm changes in MPI profiles over the course of a year; to look at associations between “Adaptive Coper” profiles at follow-up and improvements in occupational performance; and to look at factors at baseline that might be used to predict changes over time. Participants were, as usual, attending a tertiary pain management centre at a University hospital. They took part in a 21 day programme (oh the luxury of time!), and were seen by a team working together (oh the luxury of a co-located team!) including a psychologist, physician, physiotherapist, occupational therapist and social worker (oh for interprofessional teamwork!). The measures taken at pre and post were the MPI, COPM, and background demographic details.

Now here’s where the analysis gets pretty technical: dropout rates and pre-treatment differences amongst the MPI profiles were analysed using Matt-Whitney U, Kruskal-Wallis, chi-squared and independent t-test. Cross-tabs were used to describe the distribution of the MPI profiles. McNemar’s test was used to assess changes over time on each of the four profiles, and ultimately the participants were grouped into four profiles: never AC (Adaptive coper); losing AC; gaining AC, and stable AC, and these groupings were used to analyse associations between changes in MPI profile and changes on COPM from baseline to follow-up. And this, folks, is why occupational therapists NEED to learn statistical analyses! Because they went on to use univariate and multivariate logistic regressions to see whether demographic factors would predict these profiles at follow-up, incorporating satisfaction and performance scores on COPM.

What did they find?

More participants started the programme with a profile of dsyfunctional or interpersonally distressed than adaptive coper – and at both discharge and follow-up the adaptive coping group increased to be the largest subgroup. 20% of the participants ended up in the “gaining AC” group, 11% the “stable AC” group, 6% formed the “losing AC” group, and 63% were never in the adaptive coping group at all. Not so terrific in terms of broad outcome measures, but pretty consistent with other programmes around the world.

On the more individualised outcome measure of the COPM, people in the never AC group showed least clinically relevant improvement, both the stable AC and gaining AC groups showed more improvement on occupational performance and satisfaction with performance than the never AC group, while the stable AC group improved more than the losing AC group in terms of occupational performance changes.

Long-term changes showed those who started as AC were more likely to stay that way over time, and baseline scores for occupational performance were significantly associated with being AC at follow-up – in other words, people who felt OK about what they could do in terms of occupation, tended to become more capable and less disabled over time as measured by the MPI. More importantly, those people who had higher baseline scores on occupational satisfaction were 1.3 times more likely to shift to the AC group over time. “Clinically relevant improvements on performance and satisfaction with performance at 1-year follow-up, in occupations prioritized by the participants, were associated with having an AC profile at follow-up.” (p. 6).

Confidence in doing important occupations breeds confidence in other parts of living with persistent pain.

What does this all mean anyway?

Well, importantly, people who shifted from one of the other profiles to adaptive coping over a year showed clinically relevant improvements in occupational performance and satisfaction with performance – the authors suggest these findings show improvements on and satisfaction with “doing and performing” important occupations. Not being classified into adaptive coping at any time was associated with least improvement in occupational performance and satisfaction. There is an association between “doing/performing” and “coping/adapting” that hasn’t really been studied. Perhaps starting with things people enjoy instead of beating them over the head with things they’ve never been interested in could improve pain management outcomes. Pain management programmes DO influence doing in real life – if real life doing is used as therapy!

The authors also point out that “30–47% of participants who did not show an AC profile at follow-up still showed clinically relevant improvements on occupational performance and on
satisfaction with occupational performance.” (p. 8) This suggests that the MPI coping profiles only represent one part of the outcomes that are important to individuals: occupation being the individualised daily doings that people value very highly, and pointing to the need to explore individualised outcome measurement in more studies. Given that patient-centred pain management is based on individual goals, using only generic measures is likely to give misleading outcomes about treatment efficacy.

 

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

Persson, E., Eklund, M., Lexell, J., & Rivano-Fischer, M. (2017). Psychosocial coping profiles after pain rehabilitation: Associations with occupational performance and patient characteristics. Disability and Rehabilitation: An International, Multidisciplinary Journal, 39(3), 251-260.

Thinking the worst – and willingness to do things despite pain


Catastrophising, perhaps more than any other psychological construct, has received pretty negative press from people living with pain. It’s a construct that represents a tendency to “think the worst” when experiencing pain, and I can understand why people who are in the middle of a strong pain bout might reject any idea that their minds might be playing tricks on them. It’s hard to stand back from the immediacy of “OMG that really HURTS” especially when, habitually, many people who have pain try so hard to pretend that “yes everything is really all right”. At the same time, the evidence base for the contribution that habitually “thinking the worst” has on actually increasing the report of pain intensity, increasing difficulty coping, making it harder to access effective ways around the pain, and on the impact pain has on doing important things in life is strong (Quartana, Campbell & Edwards, 2009).

What then, could counter this tendency to feel like a possum in the headlights in the face of strong pain? In the study I’m discussing today, willingness to experience pain without trying to avoid or control that experience, aka “acceptance”, is examined, along with catastrophising and measures of disability. Craner, Sperry, Koball, Morrison and Gilliam (2017) recruited 249 adults who were seeking treatment at an interdisciplinary pain rehabilitation programme (at tertiary level), and examined a range of important variables pre and post treatment.  Participants in the programme were on average 50 years old, mainly married, and white (not a term we’d ever use in New Zealand!). They’d had pain for an average of 10.5 years, and slightly less than half were using opioids at the time of entry to the programme.

Occupational therapists administered the Canadian Occupational Performance Measure, an occupational therapist-administered, semi-structured interview designed to assess a person’s performance and satisfaction with their daily activities (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990). The performance scale was used in this study, along with the Chronic Pain Acceptance Questionnaire (one of my favourites – McCracken, Vowles & Eccelston, 2004); the Pain Catastrophising Scale (Sullivan, Bishop & Pivik, 1995), The Patient Health Questionnaire-9 (Kroenke, Spitzer & Williams, 2001); and The Westhaven-Yale Multidimensional Pain Inventory (Kerns, Turk & Rudy, 1985).

Now here’s where the fun begins, because there is some serious statistical analysis going on! Hierarchical multiple regression analyses is not for the faint-hearted – read the info about this approach by clicking the link. Essentially, it is a way to show if variables of your interest explain a statistically significant amount of variance in your Dependent Variable (DV) after accounting for all other variables. Or, in this study, what is the relationship between pain catastrophising, acceptance and pain severity – while controlling for age, gender, opioids use, and pain duration. The final step was to enter a calculation of the interaction between catastrophising and acceptance, and to enter this into the equation as the final step. A significant interaction suggests one of these two moderates the other – and this is ultimately captured by testing the slopes of the graphs. Complex? Yes – but a good way to analyse these complex relationships.

Results

Unsurprisingly, pain catastrophising and acceptance do correlate – negatively. What this means is that the more a person thinks the worst about their pain, the less willing they are to do things that will increase their pain, or to do things while their pain is elevated. Makes sense, on the surface, but wait there’s more!

Pain catastrophizing was significantly (ps < .01) and positively correlated with greater perceived pain intensity, pain interference, distress due to pain, and depression – and negatively correlated with occupational therapist-rated functioning. Further analysis found that only pain catastrophising (not acceptance) was associated with pain severity, while both catastrophising and acceptance predicted negative effect (mood) using the WHYMPI, but when the analysis used the PHQ-9, both pain catastrophising and pain acceptance uniquely predicted depressive symptoms.  When pain interference was used as the dependent variable, pain acceptance uniquely predicted the amount of interference participants experienced, rather than catastrophising. The final analysis was using the performance subscale of the COPM, finding that pain acceptance was a predictor, while catastrophising was not.

What does all this actually mean?

Firstly, I found it interesting that values weren’t used as part of this investigation, because when people do daily activities, they do those they place value on, for some reason. For example, if we value other people’s opinions, we’re likely to dress up a bit, do the housework and maybe bake something if we have people come to visit. This study didn’t incorporate contexts of activity – the why question. I think that’s a limitation, however, examining values is not super easy, however it’s worth keeping this limitation in mind when thinking about the results.

The results suggest that when someone is willing to do something even if it increases pain, or while pain is elevated, this has an effect on their performance, disability, the interference they experience from pain, and their mood.

The results also suggest that catastrophising, while an important predictor of pain-related outcomes, is moderated by acceptance.

My question now is – what helps someone to be willing to do things even when their pain is high? if we analyse the CPAQ items, we find things like “I am getting on with the business of living no matter what my level of pain is.”;  “It’s not necessary for me to control my pain in order to handle my life well.”; and “My life is going well, even though I have chronic pain.”. These are important areas for clinicians to address during treatment. They’re about life – rather than pain. They’re about what makes life worth living. They’re about who are you, what does your life stand for, what makes you YOU, and what can you do despite pain. And these are important aspects of pain treatment: given none of us can claim a 100% success rate for pain reduction. Life is more than the absence of pain.

 

 

Craner, J. R., Sperry, J. A., Koball, A. M., Morrison, E. J., & Gilliam, W. P. (2017). Unique contributions of acceptance and catastrophizing on chronic pain adaptation. International Journal of Behavioral Medicine, 24(4), 542-551.

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56.

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine. 16(9), 606-13.

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

McCracken LM, Vowles KE, Eccleston C. (2004). Acceptance of chronic pain: component analysis and a revised assessment method. Pain. 107(1–2), pp159–66.

Quartana PJ, Campbell CM, Edwards RR. (2009) Pain catastrophizing: a critical review. Expert Reviews in Neurotherapy, 9, pp 745–58.

SullivanMLJ, Bishop SR, Pivik J. (1995). The Pain Catastrophizing Scale: development and validation. Psychological Assessment. 7:524–32.

One way of using a biopsychosocial framework in pain management – vi


I could write about a BPS (biopsychosocial) model in every single post, but it’s time for me to explore other things happening in the pain management world, so this is my last post in this series for a while. But it’s a doozy! And thanks to Eric Bowman for sharing an incredibly relevant paper just in time for this post…

One of the problems in pain management is that there are so many assessments carried out by the professionals seeing a person – but very little discussed about pulling this information together to create an overall picture of the person we’re seeing. And it’s this aspect I want to look at today.

My view is that a BPS approach provides us with an orientation towards the multiple factors involved in why this person is presenting in this way at this time (and what is maintaining their presentation), and by integrating the factors involved, we’re able to establish a way to reduce both distress and disability. A BPS approach is like a large-scale framework, and then, based on scientific studies that postulate mechanisms thought to be involved, a clinician or team can generate some useful hypotheses through abductive reasoning, begin testing these – and then arrive at a plausible set of explanations for the person’s situation. By doing so, multiple different options for treatment can be integrated so the person can begin to find their way out of the complex mess that pain and disability can bring.

The “mechanisms” involved range from the biological (yes, all that cellular, genetic, biomechanical, muscle/nerve/brain research that some people think is omitted from a BPS approach IS included!), to the psychological (all the attention, emotion, behavioural, cognitive material that has possibly become the hallmark of a BPS approach), and eventually, to the social (interactions with family, friends, community, healthcare, people in the workplace, the way legislation is written, insurers, cultural factors and so on). That’s one mess of stuff to evaluate!

We do have a framework already for a BPS approach: the ICF (or International Classification of Functioning, Disability and Health) provides one way of viewing what’s going on, although I can empathise with those who argue that it doesn’t provide a way to integrate these domains. I think that’s OK because, in pain and disability at least, we have research into each one of these domains although the social is still the most under-developed.

Tousignant-Laflamme, Martel, Joshi & Cook (2017) provide an approach to help structure the initial domains to explore – and a way to direct where attention needs to be paid to address both pain and disability.

What I like about this model (and I urge you to read the whole paper, please!) is that it triages the level of complexity and therefore the intervention needed without dividing the problem into “physical” and “psychosocial”. This is important because any contributing factor could be The One to most strongly influence outcome – and often an integrated approach is needed, rather than thinking “oh but the biological needs to be addressed separately”.

Another feature I like about this model is the attention paid to both pain and disability.

Beginning from the centre, each of the items in the area “A” is something that is either pretty common, and/or easily modified. So, for example, someone with low back pain that’s eased by flexion, maybe has some osteoarthritis, is feeling a bit demoralised and worries the pain is going to continue, has a job that’s not readily modified (and they’re not keen on returning) might need a physiotherapist to help work through movement patterns, some good information about pain to allay their worries, an occupational therapist to help with returning to work and sleeping, and maybe some medication if it helps.

If that same person has progressed to become quite slow to move and deconditioned, they’re experiencing allodynia and hyperalgesia, they have a history of migraine and irritable bowel, their sleep is pretty rotten, and they’re avoiding movements that “might” hurt – and their employer is pretty unhappy about them returning to work – then they may need a much more assertive approach, perhaps an intensive pain management programme, a review by a psychiatrist or psychologist, and probably some occupational therapy intervention at work plus a graded exposure to activities so they gain confidence despite pain persisting. Maybe they need medications to quieten the nervous system, perhaps some help with family relationships, and definitely the whole team must be on board with the same model of healthcare.

Some aspects are, I think, missing from this model. I’d like to see more attention paid to family and friends, social and leisure activities, and the person’s own values – because we know that values can be used to help a person be more willing to engage in things that are challenging. And I think the model is entirely deficits-based meaning the strengths a person brings to his or her situation aren’t incorporated.  Of course, too, this model hasn’t been tested in practice – and there are lots of gaps in terms of the measures that can be used to assess each of these domains. But as a heuristic or a template, this model seems to be practical, relatively simple to understand – and might stop us continuing to sub-type back pain on the basis of either psychosocial risk factors or not.

Clinicians pondering this model might now be wondering how to assess each of these domains – the paper provides some useful ideas, and if the framework gains traction, I think many others will add their tuppence-worth to it. I’m curious now to see how people who experience low back pain might view an assessment and management plan based on this: would it be acceptable? Does it help explain some of the difficulties people face? Would it be useful to people living with pain so they can explore the factors that are getting in the way of recovery?

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485