Clinical reasoning – and cognitions


Possibly one of the most hotly discussed aspects of clinical reasoning and pain relates to thoughts and beliefs held by both people experiencing pain and the clinicians who work with them. It’s difficult to avoid reading papers about “pain education”, “catastrophising”, “maladaptive thinking”, but quite another to find a deeper analysis of when and why it might be useful to help people think differently about their pain, or to deal with their thoughts about their experience in a different way.

Cognition is defined by the APA Dictionary of Psychology as

1. all forms of knowing and awareness, such as perceiving, conceiving, remembering, reasoning, judging, imagining, and problem solving. Along with affect and conation, it is one of the three traditionally identified components of mind.

2. an individual percept, idea, memory, or the like. —cognitional adj. —cognitive adj.

Cognitions are arguable The Thing most accessible to ourselves and most distinctive about humans – indeed, we call ourselves “homo sapiens” or “wise man” possibly because we can recognise we have thoughts! Although, as you can see from the definition above, many aspects of cognition are not as readily available to consciousness as we might imagine.

From the early days of pain management, explanations about the biology of pain have been included. Indeed, since 1965 when Melzack and Wall introduced the Gate Control Theory, in which modulation and descending control were identified, clinicians working in pain management centres have actively included these aspects of pain biology as part of an attempt to help people with pain understand the distinction between hurting – and being harmed (see Bonica, 1993).

The purpose behind the original approaches to “explaining pain” were to provide a coherent explanation to people in pain as to the “benign” nature of their experience: in other words, by changing the understanding people held about their pain, people were more likely to willingly engage in rehabilitation – and this rehabilitation largely involved gradually increasing “up time” and reducing unhelpful positions or activity levels. Sound familiar? (see Moseley & Butler, 2015).

Of course, in the early days of pain management, specific relationships between thoughts and both automatic and volitional behaviour were unclear. What we know now is that if I wire someone up to a biofeedback machine, measuring say heart rate variability, respiration and skin conductance, and then I mention something related to the person’s appraisals of their pain – maybe “Oh this really hurts”, or “I don’t think I’ll sleep tonight with this pain” those parameters I’m measuring will fluctuate wildly. Typically, people will experience an increase of physiological arousal in response to thinking those kinds of thoughts. In turn, that elevated arousal can lead to an increased perception of pain – and increased attention to pain with difficulty taking attention off pain (see Lanzetta, Cartwright-Smith & Eleck, 1976; Crombez, Viane, Eccleston, Devuler & Goubert, 2013).

So, the relationship between what we think and both attention to pain and physiological response to those thoughts is reasonably well-established, such that if someone reports high levels of catastrophising, we can expect to find high levels of disability, and reports of higher levels of pain. So far, so good. BUT how do we integrate these findings into our clinical reasoning, especially if we’re not primarily psychologically-oriented in our treatments?

The answer has been to dish out “pain education” to everyone – giving an explanation of some of the biological underpinnings of our experience. But for some of our patients this isn’t useful, especially if they have already heard the “pain talk” – but it has only hit the head and not the heart.

As Wilbert Fordyce was known to say “Information is to behaviour change as spaghetti is to a brick”. In other words – it might hit the brick and cover it, but it doesn’t change the brick, and neither does it move the brick!

You see, cognitions are not just “thoughts”, nor thoughts we are consciously aware of. Cognitions include implicit understanding, attention, the “feeling of what it is like to” and so on. And as occupational therapists and educators have found over the years, experiential learning (learning by doing) is one of the most powerful forms of behaviour change available (Kolb, 2014). People learn by experiencing something different. This is why cognitive behavioural approaches such as Acceptance and Commitment Therapy (ACT) so strongly endorse experiential elements.

Rather than attempting to change someone’s head knowledge of pain=harm, it might be more useful to help them experience doing something different and help them explore and generate their own conclusions from the experience.

I think both occupational therapists and clinicians who provide opportunities for movements and experiences (such as massage therapists, physiotherapists, osteopaths, chiropractors, myotherapists etc) are in an ideal position to guide people through new experiences – and then help them explore those new experiences. Rather than telling people what to think or believe (especially amongst those folks who are unconvinced by “book learning”!) we’re in a good position to help them work out what’s going through their minds – and what it feels like to do something differently. Instead of convincing, we can help people ponder for themselves. This is the essence of graded exposure: going from “OMG I can’t do that!” to “Oh yeah, I can master this”. It’s the difference between reading about how to ride a bicycle – and actually getting on a bike to learn to ride.

I agree that cognitive processes are really important in understanding a person’s experience of pain. I think, though, we’ve focused on overt thoughts to the detriment of trying to understand other aspects of cognition. We need to spend some more time exploring attention and distraction from pain; memories and how these influence pain; and to examine some of the implicit features of our understanding – and instead of approaching changes to thinking/understanding via the hammer of information dumping, maybe we can ponder the opportunities that arise from helping people experience something different and new.

 

 

Bonica, J. J. (1993). Evolution and current status of pain programs. Journal of Pharmaceutical Care in Pain & Symptom Control, 1(2), 31-44. doi:10.1300/J088v01n02_03

Crombez, G., Viane, I., Eccleston, C., Devulder, J., & Goubert, L. (2013). Attention to pain and fear of pain in patients with chronic pain. Journal of Behavioral Medicine, 36(4), 371-378.
Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development (2nd Ed), Pearson Education: New Jersey.
Lanzetta, J. T., Cartwright-Smith, J., & Eleck, R. E. (1976). Effects of nonverbal dissimulation on emotional experience and autonomic arousal. Journal of Personality and Social Psychology, 33(3), 354.

Moseley, G. L., & Butler, D. S. (2015). Fifteen years of explaining pain: The past, present, and future. Journal of Pain, 16(9), 807-813. doi:10.1016/j.jpain.2015.05.005

Advertisements

Teamwork: Gaps or overlaps?


For many years now, interprofessional/multidisciplinary teams have been considered the best model for delivering pain management. This stems from studies conducted right back as far as J J Bonica in 1944 (Bonica, 1993), and originally referred to teams consisting of several medical specialties. Bonica later initiated a multidisciplinary/interdisciplinary pain programme in 1960, including 20 people from 14 medical specialties “and other health professions”. In 1977, Bonica and Butler classified pain programmes into five groups – major comprehensive multidisciplinary programmes – more than six disciplines and involved in education and research; comprehensive multidisciplinary – four to six disciplines and involved in education and research; small multidisciplinary – 2 or 3 disciplines; syndrome-oriented specialising in single diagnoses; and modality-oriented using a single treatment. There were, at the time, 327 facilities around the world – including New Zealand (The Auckland Regional Pain Service).

Bonica didn’t comment on the team structure of these facilities, nor on the mix of “other health professions” involved. There has been a significant reduction in the numbers of comprehensive pain management centres, particularly in North America since the 1990’s. Fragmented, unidimensional treatment seems to be far more common than integrated multidimensional approaches.

Why might teamwork and structure of teams be important in pain management?

I like this discussion of why interprofessional/interdisciplinary teams might be more effective in pain management than multidisciplinary: “Multidisciplinary teams are unable to develop a cohesive care plan as each team member uses his or her own expertise to develop individual care goals. In contrast, each team member in an interdisciplinary team build on each other’s expertise to achieve common, shared goals. Therefore, it is crucial to indicate that multidisciplinary teams work in a team; whereas, interdisciplinary teams engage in teamwork.”

The argument for interprofessional teams in pain management is that by drawing on a common model of pain, each profession can align their treatments to meet the person’s goals, using a common framework, language and broad principles. But, and it’s a big but, this model depends on mutual trust, respect and time spent together developing a common understanding of each team member’s contributions. This is not something in which many health professionals have much training. For a good discussion of ways to foster good dynamics, Youngwerth and Twaddle’s 2011 paper is a nice place to start.

Why write about this now?

I was prompted to write about this because of a set of questions I was posed by a group of clinicians from another profession. We ostensibly work in a team, under the ACC Pain Contracts which specify a “multidisciplinary” approach. The questions, however, reflected both a lack of knowledge about pain management group programmes, and a lack of respect for the clinical skills provided by the people who deliver the programme I’ve developed. And it’s not the first instance of such behaviour.

I rarely criticise New Zealand healthcare policy, at least not on the pages of this blog. In this instance, though, I think it’s time to point out some of the issues that are present in the way pain contracts are being delivered since late 2016.

For those who’re not aware, ACC is NZ’s only personal injury insurer, owned by the country, with no-fault, 24 hour cover. That means anyone who has an accidental injury in NZ firstly can’t sue, and secondly has their treatment and rehabilitation paid for. Like most personal injury insurance companies, ACC’s main problem is the burden of long-term claims where often the main issue preventing return to work and case closure is persistent pain. As a result, pain services have been provided under ACC rehabilitation policy under a “provider-funder split” model since 2000.

ACC contracts providers to deliver pain management services. These services were to involve a number of designated professions, and these professionals were to be at least two years post-graduation, and to have completed postgraduate education in pain and pain management. And no, I don’t think a weekend course counts as “postgraduate education”. Unfortunately, the remuneration under these contracts is incredibly low. Remuneration rates are pre-determined by ACC, so that occupational therapy and physiotherapy are given one hourly rate, psychologists have a higher rate, and medical practitioners have the highest rate of all. There’s no variation in rates to fund experienced clinicians, so everyone gets the same amount irrespective of skill level. There is little to no allowance for team meetings, and there’s no allowance for screening or reporting included in the funding for the group programme I’ve developed.

Aside from the low funding, there are other concerns for me. There has been no auditing of the providers delivering these services. As a result, large businesses naturally try to maximise profit, employing entry-level clinicians for the contracts. Incredibly challenging for new graduates who have had limited exposure to persistent pain and pain management, and often apply acute pain management principles to chronic conditions. And that risks prolonging disability and exacerbating distress of people needing help.

Secondly, because these are new contracts, with quite different requirements from earlier iterations, groups have had to recruit a great many clinicians. Some of those clinicians presumed, I think, that their professional qualification is sufficient to work with people who have persistent pain. Even if their training had no pain content. ACC considers professional registration to be quite sufficient to practice in this area. While some of these clinicians are very experienced – pain management is not simple, and it is specialised. I have heard of practitioners continuing to use gate control theory as their primary “pain education”. While it’s an advance on being told you have “somatic disorder”, it doesn’t exactly reflect modern pain concepts. Again, using outdated information risks prolonging disability and exacerbating distress in a group of vulnerable people.

Teams to deliver pain contracts were often assembled in haste. Processes of induction, continuing education, developing a common clinical model, knowledge of other professionals’ contributions have all suffered as a result. Multidisciplinary practice is the norm – as one person I know used to put it, it’s “serial monotherapy”. Decision-making processes haven’t been developed, and integrating a clinical model common to all – and therefore abolishing a hierarchical structure – has just not happened. Instead a hierarchical, patch-protecting, and disjointed model where professionals are pitted against one another to gain some kind of dominance is emerging. A far cry from a mutually-respectful, integrated, non-hierarchical interprofessional team environment that research suggests is best for delivering pain management (Gatchel, McGeary, McGeary & Lippe, 2014).

When high value, low cost treatments for persistent pain are under-funded, and when costly yet ineffective treatments such as surgery continue being delivered, it’s the people who most need help who are harmed. I suppose what’s even more concerning is that despite 1 in 5 NZers living with pain lasting more than three months, and ACC claimants representing a small proportion of those living with pain, there is no New Zealand strategy for chronic pain management. People on ACC are, in most ways, rather lucky despite the failings of this contracting system.

The pain contracts could have represented an opportunity for innovation and an expansion of understanding between professions, what has happened instead is a tendency to deliver formulaic, ritualised programmes with gaps and overlaps, as a result of underfunding, poor quality control and both ignorance and power play in some instances.

We used to be world leaders in pain management. We have failed to capitalise on our headstart.  We should do better. We must do better for people living with pain.

 

Bonica, J. J. (1993). Evolution and current status of pain programs. Journal of Pharmaceutical Care in Pain & Symptom Control, 1(2), 31-44. doi:10.1300/J088v01n02_03

Gatchel, R. J., McGeary, D. D., McGeary, C. A., & Lippe, B. (2014). Interdisciplinary chronic pain management: past, present, and future. American Psychologist, 69(2), 119.

Youngwerth, J., & Twaddle, M. (2011). Cultures of interdisciplinary teams: How to foster good dynamics. Journal of Palliative Medicine, 14(5), 650-654.

When philosophy and evidence collide: is an occupation-focused approach suitable in pain management?


I have often described myself as a renegade occupational therapist: I like statistics, I think experimental research is a good way to test hypotheses, I don’t make moccasins (though I occasionally wear them!), I’m happy reading research and figuring out how I can apply findings into my clinical practice.

Occupational therapy is a profession that continues to evolve. The origins of occupational therapy lie back in the “moral” model of treatment for mental illness when advocates found that giving people things to do helped them become well (mind you, some of the reasons for admission to a “mental asylum” were things like “wandering womb”, novel reading, laziness and “female disease” read it here on Snopes). As time passed, occupational therapy was a way to “occupy” troops recovering from war wounds, and later, tuberculosis. At various points, occupational therapists have tried to enclose practice within prevailing models: anatomical, biomechanical, neurological. And then the scope broadens and the profession returns to “occupation” and all it means. Out of this latest movement, and informing occupational therapy practice today is the idea of “occupational science” – this is the “basic science” examining the factors that underpin occupational therapy practice (Yerxa, 1990).

Unlike most “basic sciences”, occupational science draws on areas of knowledge including anthropology, sociology and political science; all social sciences that bring their own philosophical biases to understanding social phenomena. Occupational science is about “what people do in daily life” – those routines, rituals, practices, customs and daily doings that support us in our roles, shape our place in the social world, and help us form an understanding of who we are in the world. Things like how we go about getting up, the way we serve a meal, the way we dress ourselves, how we go from one place to another, the hobbies and fun things we do – all fundamental building blocks of daily life. Occupational therapy, therefore, informed by occupational science, is focused on helping people participate in daily life as fully and equitably as possible, irrespective of health status, gender, ethnicity, religious belief, age and so on.

With a focus on not only helping people participate in occupations, but also using occupation as therapy, it’s not surprising to find a plurality of approaches to treatment. I have seen art used to help people with persistent pain represent the impact of pain on their sense of self – and to celebrate changes that have happened as a result of pain management. I have seen gardening used to help people become stronger, more confident to move and to reconnect with a hobby they had given up because of pain. I have seen people begin new hobbies (geocaching anyone?) as part of occupational therapy. I have used excursions to the local shopping mall to help people regain confidence and reduce their fear of crowded places where they might get bumped. Graded exposure is also an approach occupational therapists use to help people generalise their emerging skills to approach feared movements instead of avoiding them.

What I hope I don’t see is a return to a compensatory model for persistent pain. You know what I mean here: using gadgets or aids to “make life easier” when a person is dealing with persistent pain. Things like a special long-handled tool so people can pick something up from the floor – fine in a short-term situation like immediately post hip arthroplasty, but not so much when the problem is longstanding fear and avoidance. A special vacuum-cleaner so the person doesn’t have to bend – it’s so much easier yes, but it doesn’t address the underlying problem which can be remedied.

Why is a compensatory model not so good for persistent pain management? Well, because in most instances, though not all, the reason a person isn’t doing a movement when they’re sore is not because they cannot – but because that movement increases or might increase pain, and no-one really wants to increase pain, yeah? By providing a gadget of some sort, or even working through a way to avoid that movement, occupational therapists who use this sort of approach are ignoring the strong evidence that this reinforces avoidance as a strategy for managing pain, doesn’t address the underlying fear, and risks prolonging and actually reinforcing ongoing disability. This approach is harmful.

Helping people do things that might hurt isn’t a very popular idea for some clinicians and a lot of people living with persistent pain. It feels at first glance, like a really nasty thing to do to someone. BUT graded exposure is an effective, occupationally-focused treatment for fear of movement and fear of pain (Lopez-de-Uralde-Villaneuva, Munos-Garcia, Gil-Martinez, Pardo-Montero, Munoz-Plata et al, 2016). Used within an acceptance and commitment therapy model, graded exposure becomes “committed action” that’s aligned to values – and engaging in valued occupations is exactly what occupational therapy is all about.

Of course, not everyone enjoys this kind of work. That’s OK – because there are others who DO enjoy doing it! And it’s all in the way that it’s done – a framework of values, commitment, mindfulness and, that’s right, “chat therapy” – which some occupational therapists believe is right outside their scope of practice.

Now unless someone works in a vacuum, via some sort of mind-to-mind process, I cannot think of any therapist who doesn’t communicate with the person they’re working with. Humans communicate effortlessly and continuously. And “chat therapy” is about communicating – communicating skillfully, carefully selecting what to respond to and how, and focusing on clinical reasoning. Of course, if that’s ALL the treatment is about, then it’s not occupational therapy, but when it’s used in the aid of helping someone participate more fully in valued occupations using CBT, ACT, DBT or indeed motivational interviewing is one of the approaches occupational therapists can employ both within an occupation as therapy and occupation as outcome model.

I firmly believe that occupational therapists should follow an evidence base for their work. While I openly acknowledge the paucity of occupational therapy-specific research in persistent pain, particularly using occupation as therapy, there is plenty of research (carried out by other professions) to support approaches occupational therapists can adopt. After all, we already use developmental models, neurological models, sociological models, anthropological ones and yes, psychological ones. And that’s without venturing into the biomechanical ones! So it’s not an unfamiliar clinical reasoning strategy.

What makes occupational therapy practice in pain management absolutely unique are two things: a complete focus on reducing disability through enabling occupation, and a commitment to bringing skills developed “in clinic” outside into the daily lives and world of the people we are privileged to work with. What we should not do is focus on short-term outcomes like reducing (avoiding) bending with some new technique, while being ignorant of other occupational approaches. We are a fortunate profession because all of what we do is biopsychosocial, let’s not forget it.

 

López-de-Uralde-Villanueva, I., Muñoz-García, D., Gil-Martínez, A., Pardo-Montero, J., Muñoz-Plata, R., Angulo-Díaz-Parreño, S., . . . La Touche, R. (2016). A systematic review and meta-analysis on the effectiveness of graded activity and graded exposure for chronic nonspecific low back pain. Pain Medicine, 17(1), 172-188. doi:10.1111/pme.12882

Yerxa, E. J. (1990). An introduction to occupational science, a foundation for occupational therapy in the 21st century. Occup Ther Health Care, 6(4), 1-17. doi:10.1080/J003v06n04_04

Clinical reasoning in pain – emotions


The current definition of pain includes the words “unpleasant sensory and emotional experience” so we would be surprised if we encountered a person with pain who wasn’t feeling some sort of negative emotion, am I right? Yet… when we look at common pain assessments used for low back pain, items about emotions or worries are almost always included as indicators of negative outcomes (for example, STarTBack – Worrying thoughts have been going through my mind a lot of the time, I feel that my back pain is terrible and it’s never going to get any better, In general I have not enjoyed all the things I used to enjoy). And while the screening questionnaires have been validated, particularly for predictive validity (ie higher scores obtained on these measures are associated with poorer outcomes), I wonder how much we know, or think we know, about the relationship between emotions and pain. Perhaps its time for a quick review…

Firstly, let’s define emotions (seems easy!) “Emotions are multicomponent phenomena; (2) emotions are two-step processes involving emotion elicitation mechanisms that produce emotional responses; (3) emotions have relevant objects; and (4) emotions have a brief duration.” (Sander, 2013). There are thought to be six evolutionarily shaped basic emotions such as joy, fear, anger, sadness, disgust, and surprise (Ekman, 1992); but as usual there are complications to this because emotions are also examined in terms of their valence – negative or positive – and arousal (similar to intensity, but in terms of how much our physiology gets excited).

There are two main brain areas involved in processing both pain and unpleasant stimuli in general are the amygdala and the prefrontal cortex. These areas don’t exclusively deal with pain but with stimuli that are especially salient to people (remember last week’s post?), and researchers are still arguing over whether particular areas are responsible for certain emotions, or whether “emotions emerge when people make meaning out of sensory input from the body and from the world using knowledge of prior experience” based on basic psychological operations that are not specific to emotions (Lindquist et al., 2012, p. 129) . I’m quoting from an excellent book “The neuroscience of pain, stress and emotions” by Al, M. Absi, M.A. Flaten, and M. Rogers.

Now researchers have, for years, been interested in the effects of emotions on pain – there is an enormous body of literature but luckily some good reviews – see Bushnell et al., 2013; Roy, 2015 ;  Wiech and Tracey, 2009. What this research shows, essentially, is that pain is reduced by positive emotions, and increased by negative emotions. Now we need to be somewhat cautious about over-interpreting these results because they’re mainly conducted in experimental designs with acute experimental pain – people are shown pictures that elicit certain emotions, then poked or zapped, and asked to rate their pain (and their emotions, usually). It’s thought that the way these emotions influence pain is via our descending inhibitory pathways. Now the situation with real people experiencing pain that is not experimentally administered is probably slightly different – a lot more salient, a lot more worrying, and far less controlled. Nevertheless it’s worth knowing that when you’re feeling down, you’re likely to rate your pain more highly. If the emotion-eliciting stimuli are particularly arousing (ie they’re REALLY interesting) then the effect on pain ratings is greater. Experimenters also found pain reduces responses to pleasant stimuli, but there isn’t such a strong relationship with negative stimuli.

The valence (positiveness or negativeness – if that’s a word LOL) activates motivational systems either pleasant = appetitive, or unpleasant = defensive. Arousal or alertness gives us a clue as to how much motivation we have to either move towards or away from the stimulus. The degree of arousal affects our pain experience – so the more negative and angry we are, we rate our pain more highly; while the happier and jollier we are, we rate our pain as less intense. BUT, as for most things in pain, it’s complex – so once we get more than moderately angry/alert/aroused, the less we experience pain. The diagram below shows this kind of relationship – from the same book I quoted above (it’s worth getting!).

Does this mean we should freak people out so they experience less pain? Don’t be dumb! Being that alert is really exhausting. But what this diagram can explain is why some people, when they’re first attending therapy and are asked to do something out of the ordinary and just so slightly threatening (like lifting weights, or jumping on a treadmill) might report higher pain intensity – because we’ve caught them at the moderate arousal level where pain is facilitated.

Clinically, what this information means is that if we’re hoping to improve someone’s pain via pleasant or positive emotions, we’d better make sure they’re fairly high energy/arousing – a hilarious comedy perhaps – because lower intensity pleasure doesn’t affect pain much.

We should, at all costs, avoid eliciting fear and worry, or anger in the people we treat – because this increases pain intensity. This means giving people time to get used to our setting, what we’re asking them to do, and the intensity of whatever activity we’re going to do with them. In graded exposure, we should give people skills in mindfulness well before we begin doing the exposure component – because it’s likely to evoke higher than usual pain intensity if they can’t “be with” the increased anxiety that emerges during this kind of treatment.

And finally, if someone is experiencing anger, depression, sadness or anxiety – this is a normal psychological reaction integral to our experience of pain. It’s not necessarily pathological – though it probably increases the pain intensity the person reports.

I think we could promote far more scheduling pleasurable experiences as a routine part of therapy. What makes people smile, feel joy, have a good belly laugh? When was the last time they watched a comedy or joked with their family? Therapy can be fun, just see my friend Alice Hortop’s work on comedy as therapy (https://alicehortop.com/)!

 

 

Ekman, P.  (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.

 

 

 

Flaten, M. A. (2016). The neuroscience of pain, stress, and emotion : Psychological and clinical implications. In Al, M. Absi, M. A. Flaten, & M. Rogers (Eds.), Neuroscience of Pain, Stress, and Emotion: Amsterdam, Netherlands : Elsevier.

K.A. Lindquist, T.D. Wager, H. Kober, E. Bliss-Moreau, L.F. Barrett, (2012). The brain basis of emotion: a meta-analytic review. Behavioral and Brain Sciences, 35 (03),  121–143

 

 

Roy, M. (2015). Cerebral and spinal modulation of pain by emotions and attention. Pain, Emotion and Cognition, 35–52.

 

Sander, D. (2013). Models of emotion: the affective neuroscience approach. in J.L. Armony, P. Vuilleumier (Eds.), The Cambridge handbook of human affective neuroscience, Cambridge University Press, Cambridge, pp. 5–56

 

 

 

Clinical reasoning and why models of low back pain need to be integrated


Clinical reasoning has been defined as “the process by which a therapist interacts with a patient, collecting information, generating and testing hypotheses, and determining optimal diagnosis and treatment based on the information obtained.” (thanks to https://www.physio-pedia.com/Clinical_Reasoning#cite_note-Higgs-1). The model or lens through which we do these processes naturally has a major influence on our relationship with the person, the information we think is relevant, the hypotheses we develop, and ultimately the problems we identify and how we treat them. No arguments so far, yes?

So when we come to thinking about pain, particularly where a “diagnosis” can’t be readily established – or where the treatment doesn’t directly address a proposed causal factor – clinical reasoning should be led by some sort of model, but how explicit is our model, really? And, what’s more, how well does the research support our model, and the relationships between variables?

I’m thinking about my approach as an occupational therapist where my interest in assessment is to identify why this person is presenting in this way at this time, and what might be maintaining their current predicament; and my aim is to identify what can be done to reduce distress and disability, while promoting participation in daily occupations (activities, things that need to be done or the person wants to do). For many years now I’ve used a cognitive behavioural model first developed by Dr Tim Sharp who has now moved into Positive Psychology. His reformulation of the cognitive behavioural model works from the “experience” of pain through to responses to that experience, but incorporates some of the cyclical interactions between constructs. The model doesn’t include inputs to the “experience” component from the nociceptive system – but it could.

Many other models exist. Some of them are quite recent – the STarT Back Tool, for example, provides a very simplified screening approach to low back pain that some people have identified as a clinical reasoning model. Another is by Tousignant-Laflamme, Martel, Joshi & Cook (2017), and is a model aimed at pulling all the various approaches together – and does so with a beautifully-coloured diagram.

But.

You knew there would be one! What I think these two models omit is to generate some relationships between the constructs, particularly the psychological ones. You see, while it’s a cyclical interaction, there are some relationships that we can identify.  And over the next few weeks I’ll be writing about some of the known associations, just to begin to build a picture of the relationships we can assess before we begin generating hypotheses.

For example, we know that the nervous system, and in particular our mind/brain, is never inactive and is therefore never a completely blank slate just waiting for information to come into it, but we also know there are relationships between the intensity/salience/novelty of a stimulus that attract attention, and that this competes with whatever cognitive set we have operating at the time (Legrain, Van Damme, Eccleston, Davis, Seminowicz & Crombez, 2009). So one relationship we need to assess is current contexts (and there are always many), and the times when a person is more or less aware of their pain.

Now, what increases the salience of a stimulus? For humans it’s all about meaning. We attribute meaning to even random patterns (ever seen dragons and horses in the clouds?!), so it’s unsurprising that as we experience something (or watch someone else experiencing something) we make meaning of it. And we generate meanings by relating concepts to other concepts – for a really good introduction to a very geeky subject, head here to read about relational frame theory. Relational frame theory is used to explain how we generate language and meanings by relating events with one another (The Bronnie translation! – for an easier version go here). Wicksell and Vowles (2015) describe this, and I’m going to quote it in full:

As described by relational frame theory, the theoretical framework underlying ACT, stimulus functions are continuously acquired via direct experiences, but also through their relations with other stimuli [5]. This implies that a behavioral response is not due to just one stimuli but rather the relational network of stimuli. Pain as an interoceptive stimulus is associated with a large number of other stimuli, and the actions taken depend on the psychological function(s) of that relational network of stimuli. A seemingly trivial situation may therefore elicit very strong reactions due to the associations being made: a relatively modest pain sensation from the neck trigger thoughts like “pain in the neck is bad,” which in turn are related to ideas such as “it may be a fragile disk,” and “something is terribly wrong,” that eventually lead to fatalistic conclusions like “I will end up in a wheelchair.” Thus, even if the initial stimulus is modest, it may activate a relational network of stimuli with very aversive psychological functions.

In other words, we develop these networks of meaning from the time we’re little until we die, and these mean any experience (situation, context, stimulus, event, action) holds meaning unique and particular to the individual. And these networks of meaning are constructed effortlessly and usually without any overt awareness. Each event/experience (yeah and the rest) then has further influence on how we experience any subsequent event/experience. So if you’ve learned that back pain is a Very Bad Thing, and you’ve done so since you were a kid because your Mother had back pain and took herself to the doctor and then stopped playing with you, you may have a very strong network of relationships built between low back pain, resting, healthcare, abandonment, sadness, anger, loneliness, fear, mother, father, pills, treatment – and the this goes on.

So when we’re beginning to construct a clinical reasoning model for something like low back pain we cannot exclude the “what does it mean” relationship. Every time someone experiences “ouch!” they’re processing a network of associations and relationships and behaviours that go on to influence their response to that experience – and affect attention to it and subsequent response to it.

Over 1000 words and I’ve not even started on emotions and pain!

Take home message: Even if we think we’re not addressing “psychological” stuff – we ARE. Omitting the “what does it mean to you?” and failing to factor that in to our clinical reasoning and subsequent treatment means we’re walking uphill on a scree slope. Oh, and telling someone they’re safe does not change those associations, especially if they’re longstanding. There’s more needed.

 

Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, & Crombez G (2009). A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain, 144 (3), 230-2 PMID: 19376654

Sharp, T. J. (2001). Chronic pain: A reformulation of the cognitive-behavioural model. Behaviour Research and Therapy, 39(7), 787-800. doi:http://dx.doi.org/10.1016/S0005-7967(00)00061-9

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485

Wicksell, R. K., & Vowles, K. E. (2015). The role and function of acceptance and commitment therapy and behavioral flexibility in pain management. Pain Management, 5(5), 319-322. doi:10.2217/pmt.15.32

Occupational therapists’ knowledge of pain


I am mightily bothered by health professionals’ lack of knowledge about pain. Perhaps it’s my “teacher” orientation, but it seems to me that if we work in an area, we should grab as much information about that area as possible – and pain and pain management is such an important part of practice for every health professional that I wonder why it’s so often neglected. So, to begin exploring this, I completed a search looking at occupational therapists’ knowledge of pain – and struck gold,  kinda.

Angelica Reyes and Cary Brown conducted a survey of Canadian occupational therapists, to explore how well occupational therapists knew their stuff.

Members of the Canadian Association of Occupational Therapists were asked to participate and a total of 354 therapists (mainly from Ontario, Alberta and Nova Scotia) took part. Curious that few were from British Columbia where I know of quite a few occupational therapists working in the area, but there you have it.  Over half of the respondents had 10 years or less experience – so they were fairly recent graduates and should reflect a “current” educational bias. Only 5% of the total number of members of CAOT responded, so this is a fraction of the occupational therapists working in Canada – but you’d think the motivated (ie knowledgeable) would be more likely to respond than those who don’t work in the area….

What they found was consistent with previous studies (prior to 2000) showing that these respondents, who were surveyed using the City of Boston’s Rehabilitation Professionals’ Knowledge and Attitude Survey (Rochman & Herbert, 2015), had disturbing “potential knowledge gaps” in the following areas:

  • children’s ability to feel pain;
  • use of analgesics in orthopedic pain
  • use of nondrug treatments
  • thermal modalities
  • prevalence of malingering
  • impact of therapists’ values on assessment of veracity
  • mind/body dualism in chronic pain
  • measurement of pain intensity
  • effect of under-treatment on chronicity
  • prevalence of patients who over-report pain
  • prevalence ofpatients who are likely to become addicted if treated with opioids.

Of particular concerns was 45.7% of participants believed that malingering is common; 38% believed that pain intensity can be objectively measured, 39.7% believed people with pain over-report their pain, and 59.8% believed that opioid addiction is likely to occur in more than 5% of the patient population.

OUCH!

So, it seems that these occupational therapists had some very outdated ideas about pain, and in particular, seem to have missed the point that because pain is a biopsychosocial experience, we have no way to determine whether someone is “faking” – or malingering.

Now, I will lay good money on a bet that if we were to carry out this very same survey amongst any other health profession, we’d still arrive at these rather unsavoury findings. Folks, I live in a pain nerd bubble and I still hear these kinds of discussions amongst knowledgeable health professionals, so it’s unsurprising that so many people hold these beliefs. Beliefs that will hamper developing good relationships with the people we want to help, and beliefs that fly in the face of what we know about pain.

I am SO not pointing the finger at Canadian occupational therapists, neither am I pointing the finger at my profession alone. I think this lack of understanding reflects many things:

  1. Pain is a complex experience, and the legacies of ancient models lingers everywhere (dualism, medical model, reductionism, etc);
  2. We devote very little time in our professional training to learning about pain – and often, it’s limited to “here is the nociceptive system”;
  3. The research around pain has exploded over the last 15 years – it’s hard to keep up, which is why I blog;
  4. The problem of persistent pain is under-estimated, so if a person works in paediatrics, older person’s health, neurology, brain injury, spinal cord injury – it’s quite probable that pain is almost completely ignored, because “it’s not relevant”. After all, pain is something for specialist pain services, yes? NO
  5. Prevailing attitudes within the healthcare community are that pain is a difficult area to understand – and “should” be treated with medication or surgery otherwise….

You can see that this year’s IASP Global Year for Excellence in Pain Education has much to do.

Did you know that IASP have produced NINE comprehensive curricula – including occupational therapy  (thank you to Emeritus Professor Jenny Strong, Professor Cary Brown and Dr Derek Jones for developing this wonderful resource). This means there is no reason for us not to begin integrating this import area of practice into our undergraduate training.

Research examining occupational therapy’s contribution within pain management is in its infancy – but oh how my occupational therapy heart went pit-a-pat when, at the Australian and New Zealand Pain Society Scientific Meeting I presented alongside two other occupational therapists with PhD’s (or nearly there!) to a room full of clinicians, not just occupational therapists. While we have little specifically occupational therapy research, occupational therapists have been and are continuing to be part of research efforts around the world. And what clinicians do is apply what is learned into the daily lives of the people we work with. That, friends, is what occupational therapy is about – helping people live full, rich lives doing what’s important to them.

Reyes, A. N., & Brown, C. A. (2016). Occupational therapists’ pain knowledge: A national survey. Disability and Rehabilitation: An International, Multidisciplinary Journal, 38(13), 1309-1317.

Rochman D, Herbert P. Rehabilitation professionals knowledge and attitudes regarding pain (COBS). Accessed 18 March 2015. Available from: http://prc.coh.org/html/rehab_professionals.htm.

When it hurts – but it’s important to keep doing


To date, despite years of research and billions of dollars, there is no satisfactory way to reduce pain in all people. In fact, our pain reduction treatments for many forms of persistent pain are pretty poor whether we look at pharmaceuticals, surgery, psychological treatments or even exercise. What this means is there are a lot of disillusioned and frustrated people in our communities – yet life carries on, and people do keep doing!

In an effort to understand what might help people who don’t “find a cure”, researchers and clinicians have been looking at mediators. Mediators are factors that explain a relationship between two variables. In the study I’m examining today, the predictor is pain intensity, and the criterion variable is participating in valued life activities (the things we want or need to do). The research question was whether self-efficacy and/or pain acceptance mediated engaging in valued life activities.

Ahlstrand, Vaz, Falkmer, Thyberg and Bjork (2017) used a cross-sectional study to explore relationships between the variables above in a group of people with rheumatoid arthritis (RA), drawn from three rheumatology registers in South East Sweden. Participants were required to have confirmed RA; be between 18 – 80 years; have had RA for four years or more; and have data included in the quality register – a total of 737 people agreed to take part (from a total of 1277 meeting entry criteria).

The researchers used the Swedish versions of Health Assessment Questionnaire (Wolfe, 1989) to establish degree of difficulty in daily activities, as well as the Valued Life Activities scale (Katz, Morris & Yellin, 2006); the Arthritis Self-Efficacy Scale (Lorig, Chastain, Ung, Shoor & Holman, 1989); and the Chronic Pain Acceptance Questionnaire (Wicksell, Olsson & Melin, 2009).
The statistical analyses included Chi-square tests of independence to identify significant differences in categorical factors due to gender, and steps were taken to establish whether there were gender differences for pain acceptance, self-efficacy and valued life activities. Pearson correlations were used to explore the relationships between acceptance, self efficacy and the valued life activities summary score, and then univariate regressions were undertaken to test each individual factor (eg pain, pain acceptance and self efficacy on valued life activities). Then, only the significant contributors in univariate analyses where entered into the hierarchical linear regression models. The tests were to establish whether self-efficacy would predict valued life activities after acceptance and pain scores were considered.

Finally, structural equation modelling was used to examine the contribution and influence of pain, activity engagement and self-efficacy on difficulties performing valued life activities. A note here: The authors used the structure of the ICF model to name the constructs in their structural equation model.

What did they find?

The people who responded to this survey tended to be less active than those who were on the registers but didn’t respond, so we need to keep this in mind when we interpret their results. They found that women reported slightly more pain than men, but there were no differences between men and women on all measures except that men scored more highly on the symptom control subscale of the self-efficacy measure. A point to note here is that, unlike the Pain Self Efficacy Questionaire, this measure includes attempts to reduce or control pain and/or disability, so it’s a slightly different construct from the PSEQ which measures confidence to engage in doing things despite the pain.

In terms of pain, pain acceptance, and arthritis self-efficacy, there were low to moderate associations between these and engaging in valued life activities. In fact, all pain acceptance and self-efficacy constructs measured in this study were associated with performing valued life activities. In other words, when people are confident, and willing to do things and engage in activities despite pain, the more valued activities they actually do. In fact, one of the more striking findings was a negative relationship between activity engagement and performing valued life activities – those with lower activity engagement scores reported great difficult engaging in what was important to them (not especially surprising given that both scales are about doing what’s important and getting on with life).

Now for the really geeky model: structural equation modeling found a rather complex relationship between all the variables – so complex I’m going to include the diagram.

What does it show? Well, there’s a relationship between pain intensity and valued activity engagement – the more pain, the less people do what’s important. BUT this is mediated by “personal factors” (remember the ICF labels). These personal factors are the pain acceptance activity engagement, self-efficacy for pain and self-efficacy for symptoms. Interestingly, pain willingness, the other subscale on the pain acceptance scale, wasn’t correlated.

Or is it surprising? To my mind there are some interesting conceptual issues with this study. Firstly, in a group that is self-selected and represents slightly more disability than those who didn’t respond, it’s not surprising that pain intensity and disability were correlated. This is something we see often pre-treatment in chronic pain settings. It’s also no surprise to me that the Arthritis self-efficacy scales were associated with valued activities, and with activity engagement – the arthritis self-efficacy scales ask “How certain are you that you can decrease your pain quite a bit?”; “How certain are you that you can that you can make a small-to moderate reduction in your arthritis pain by using methods other than taking extra medication?” amongst other questions. These suggest that pain reduction is a primary aim in arthritis management. The Chronic Pain Acceptance Questionnaire, however, is a very different beast. The Activity Engagement scale is about doing things that are valued (similar to the Valued Life Activity scale), while the  Willingness scale is about being willing to live life again despite pain – for example “I am getting on with the business of living no matter what my level of pain is.”; “It’s not necessary for me to control my pain in order to handle my life well.”.

While the authors argue that this study shows the value of self efficacy, stating “Active management promotes a sense of confidence, or self-efficacy, for dealing with pain that is associated with improved participation in daily activities and wellbeing.” I think the Arthritis Self-Efficacy Scale’s focus on controlling pain and other symptoms is incompatible with the constructs implied in the CPAQ. The ACT (Acceptance and Commitment Therapy) approach to pain is, as I’ve mentioned many times, a focus on engaging in valued activities irrespective of pain intensity – a more achievable goal for many than becoming confident to reduce pain as the ASES measures.

To their credit, the authors also indicate that men and women who continue to experience pain despite optimal medical treatment might benefit from strategies to increase their confidence to manage their own symptoms – but that a focus on pain control instead of participation despite pain is probably unhelpful. They go on to say that “by focusing on pain aceptance and activity engagement despite pain, self-management strategies may change the focus from pain control to a more flexible engagement in valued activities.” I couldn’t agree more – and I wish they’d used the Pain Self Efficacy Questionnaire instead of the ASES in this study. Maybe we need more discussion about appropriate measures in rheumatology research.

 

Ahlstrand, I., Vaz, S., Falkmer, T., Thyberg, I., & Björk, M. (2017). Self-efficacy and pain acceptance as mediators of the relationship between pain and performance of valued life activities in women and men with rheumatoid arthritis. Clinical Rehabilitation, 31(6), 824-834. doi:10.1177/0269215516646166

Katz PP, Morris A and Yelin EH. (2006). Prevalence and predictors of disability in valued life activities among individuals with rheumatoid arthritis. Annals of Rheumatology Diseases. 65: 763–769.

Lorig K, Chastain RL, Ung E, Shoor S and Holman HR. (1989). Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis & Rheumatism, 32(1): 37–44.

Wicksell RK, Olsson GL and Melin L. (2009). The Chronic Pain Acceptance Questionnaire (CPAQ)-further validation including a confirmatory factor analysis and a comparison with the Tampa Scale of Kinesiophobia. European Journal of Pain, 13: 760–768.

Wolfe F. (1989). A brief clinical health assessment instrument: CLINHAQ. Arthritis & Rheumatism,  32 (suppl): S9

Do pain management programmes really influence “doing” in daily life?


Disability and coping are two of the most important targets in persistent pain management, along with distress and pain intensity (the latter perhaps being the most difficult to influence). A question, however, is whether existing measures of disability truly capture the activities or occupations that people most value. For example, if house cleaning is just not my thing, even if my functioning improved over the course of a programme, would I choose to spend that new capability on vacuum-cleaning or out there in the garden?!

The Westhaven-Yale Multidimensional Pain Inventory (MPI)(Kerns, Turk & Rudy, 1985)  is a true workhorse of pain management measurement: It’s a measure that provides, via the subscales, an estimate of the complex inter-relationships involved in pain-related disability and distress. Three profiles of coping approach have been derived from the MPI indicating “Adaptive Coping” – the person is likely to continue to improve and engage in living well if they carry on as they are; “Interpersonally Distressed” – the person is experiencing difficulties with relationships and is feeling unsupported by others around them; and “Dysfunctional” – the person is struggling with their pain, and both disability and distress can feel overwhelming.

But the disability components of the MPI don’t really indicate the kinds of activities that people might be passionate about – or those that are relevant to their lives. The items are about general activities people “typically” do – in a North American setting. I know they’ve been validated in many different populations but they still represent a general idea of activity and function rather than the unique and idiosyncratic occupations that people do. (What's the difference? An occupation is the unique way I perform the important tasks of my day - the way I dash around the house while simultaneously cleaning my teeth, getting the dogs outside, making sure the curtains are opened and the appliances off just before I head out the door! We could call this "getting ready for work" but the way I do it, and the way you do it is probably very different!)

Why is that important? Well, because people value different occupations differently, and because values drive motivation, a broad measure of disability may not capture the true value of a pain management programme. And this is why the Canadian Occupational Performance Measure (COPM) (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990) is often used by occupational therapists to establish exactly what it is a person wants to be able to do. Goal Attainment Scaling is another option.

The study

In this study by Persson, Eklund, Lexell & Rivano-Fischer (2017), the aims were to assess longterm changes in MPI profiles over the course of a year; to look at associations between “Adaptive Coper” profiles at follow-up and improvements in occupational performance; and to look at factors at baseline that might be used to predict changes over time. Participants were, as usual, attending a tertiary pain management centre at a University hospital. They took part in a 21 day programme (oh the luxury of time!), and were seen by a team working together (oh the luxury of a co-located team!) including a psychologist, physician, physiotherapist, occupational therapist and social worker (oh for interprofessional teamwork!). The measures taken at pre and post were the MPI, COPM, and background demographic details.

Now here’s where the analysis gets pretty technical: dropout rates and pre-treatment differences amongst the MPI profiles were analysed using Matt-Whitney U, Kruskal-Wallis, chi-squared and independent t-test. Cross-tabs were used to describe the distribution of the MPI profiles. McNemar’s test was used to assess changes over time on each of the four profiles, and ultimately the participants were grouped into four profiles: never AC (Adaptive coper); losing AC; gaining AC, and stable AC, and these groupings were used to analyse associations between changes in MPI profile and changes on COPM from baseline to follow-up. And this, folks, is why occupational therapists NEED to learn statistical analyses! Because they went on to use univariate and multivariate logistic regressions to see whether demographic factors would predict these profiles at follow-up, incorporating satisfaction and performance scores on COPM.

What did they find?

More participants started the programme with a profile of dsyfunctional or interpersonally distressed than adaptive coper – and at both discharge and follow-up the adaptive coping group increased to be the largest subgroup. 20% of the participants ended up in the “gaining AC” group, 11% the “stable AC” group, 6% formed the “losing AC” group, and 63% were never in the adaptive coping group at all. Not so terrific in terms of broad outcome measures, but pretty consistent with other programmes around the world.

On the more individualised outcome measure of the COPM, people in the never AC group showed least clinically relevant improvement, both the stable AC and gaining AC groups showed more improvement on occupational performance and satisfaction with performance than the never AC group, while the stable AC group improved more than the losing AC group in terms of occupational performance changes.

Long-term changes showed those who started as AC were more likely to stay that way over time, and baseline scores for occupational performance were significantly associated with being AC at follow-up – in other words, people who felt OK about what they could do in terms of occupation, tended to become more capable and less disabled over time as measured by the MPI. More importantly, those people who had higher baseline scores on occupational satisfaction were 1.3 times more likely to shift to the AC group over time. “Clinically relevant improvements on performance and satisfaction with performance at 1-year follow-up, in occupations prioritized by the participants, were associated with having an AC profile at follow-up.” (p. 6).

Confidence in doing important occupations breeds confidence in other parts of living with persistent pain.

What does this all mean anyway?

Well, importantly, people who shifted from one of the other profiles to adaptive coping over a year showed clinically relevant improvements in occupational performance and satisfaction with performance – the authors suggest these findings show improvements on and satisfaction with “doing and performing” important occupations. Not being classified into adaptive coping at any time was associated with least improvement in occupational performance and satisfaction. There is an association between “doing/performing” and “coping/adapting” that hasn’t really been studied. Perhaps starting with things people enjoy instead of beating them over the head with things they’ve never been interested in could improve pain management outcomes. Pain management programmes DO influence doing in real life – if real life doing is used as therapy!

The authors also point out that “30–47% of participants who did not show an AC profile at follow-up still showed clinically relevant improvements on occupational performance and on
satisfaction with occupational performance.” (p. 8) This suggests that the MPI coping profiles only represent one part of the outcomes that are important to individuals: occupation being the individualised daily doings that people value very highly, and pointing to the need to explore individualised outcome measurement in more studies. Given that patient-centred pain management is based on individual goals, using only generic measures is likely to give misleading outcomes about treatment efficacy.

 

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

Persson, E., Eklund, M., Lexell, J., & Rivano-Fischer, M. (2017). Psychosocial coping profiles after pain rehabilitation: Associations with occupational performance and patient characteristics. Disability and Rehabilitation: An International, Multidisciplinary Journal, 39(3), 251-260.

Thinking the worst – and willingness to do things despite pain


Catastrophising, perhaps more than any other psychological construct, has received pretty negative press from people living with pain. It’s a construct that represents a tendency to “think the worst” when experiencing pain, and I can understand why people who are in the middle of a strong pain bout might reject any idea that their minds might be playing tricks on them. It’s hard to stand back from the immediacy of “OMG that really HURTS” especially when, habitually, many people who have pain try so hard to pretend that “yes everything is really all right”. At the same time, the evidence base for the contribution that habitually “thinking the worst” has on actually increasing the report of pain intensity, increasing difficulty coping, making it harder to access effective ways around the pain, and on the impact pain has on doing important things in life is strong (Quartana, Campbell & Edwards, 2009).

What then, could counter this tendency to feel like a possum in the headlights in the face of strong pain? In the study I’m discussing today, willingness to experience pain without trying to avoid or control that experience, aka “acceptance”, is examined, along with catastrophising and measures of disability. Craner, Sperry, Koball, Morrison and Gilliam (2017) recruited 249 adults who were seeking treatment at an interdisciplinary pain rehabilitation programme (at tertiary level), and examined a range of important variables pre and post treatment.  Participants in the programme were on average 50 years old, mainly married, and white (not a term we’d ever use in New Zealand!). They’d had pain for an average of 10.5 years, and slightly less than half were using opioids at the time of entry to the programme.

Occupational therapists administered the Canadian Occupational Performance Measure, an occupational therapist-administered, semi-structured interview designed to assess a person’s performance and satisfaction with their daily activities (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990). The performance scale was used in this study, along with the Chronic Pain Acceptance Questionnaire (one of my favourites – McCracken, Vowles & Eccelston, 2004); the Pain Catastrophising Scale (Sullivan, Bishop & Pivik, 1995), The Patient Health Questionnaire-9 (Kroenke, Spitzer & Williams, 2001); and The Westhaven-Yale Multidimensional Pain Inventory (Kerns, Turk & Rudy, 1985).

Now here’s where the fun begins, because there is some serious statistical analysis going on! Hierarchical multiple regression analyses is not for the faint-hearted – read the info about this approach by clicking the link. Essentially, it is a way to show if variables of your interest explain a statistically significant amount of variance in your Dependent Variable (DV) after accounting for all other variables. Or, in this study, what is the relationship between pain catastrophising, acceptance and pain severity – while controlling for age, gender, opioids use, and pain duration. The final step was to enter a calculation of the interaction between catastrophising and acceptance, and to enter this into the equation as the final step. A significant interaction suggests one of these two moderates the other – and this is ultimately captured by testing the slopes of the graphs. Complex? Yes – but a good way to analyse these complex relationships.

Results

Unsurprisingly, pain catastrophising and acceptance do correlate – negatively. What this means is that the more a person thinks the worst about their pain, the less willing they are to do things that will increase their pain, or to do things while their pain is elevated. Makes sense, on the surface, but wait there’s more!

Pain catastrophizing was significantly (ps < .01) and positively correlated with greater perceived pain intensity, pain interference, distress due to pain, and depression – and negatively correlated with occupational therapist-rated functioning. Further analysis found that only pain catastrophising (not acceptance) was associated with pain severity, while both catastrophising and acceptance predicted negative effect (mood) using the WHYMPI, but when the analysis used the PHQ-9, both pain catastrophising and pain acceptance uniquely predicted depressive symptoms.  When pain interference was used as the dependent variable, pain acceptance uniquely predicted the amount of interference participants experienced, rather than catastrophising. The final analysis was using the performance subscale of the COPM, finding that pain acceptance was a predictor, while catastrophising was not.

What does all this actually mean?

Firstly, I found it interesting that values weren’t used as part of this investigation, because when people do daily activities, they do those they place value on, for some reason. For example, if we value other people’s opinions, we’re likely to dress up a bit, do the housework and maybe bake something if we have people come to visit. This study didn’t incorporate contexts of activity – the why question. I think that’s a limitation, however, examining values is not super easy, however it’s worth keeping this limitation in mind when thinking about the results.

The results suggest that when someone is willing to do something even if it increases pain, or while pain is elevated, this has an effect on their performance, disability, the interference they experience from pain, and their mood.

The results also suggest that catastrophising, while an important predictor of pain-related outcomes, is moderated by acceptance.

My question now is – what helps someone to be willing to do things even when their pain is high? if we analyse the CPAQ items, we find things like “I am getting on with the business of living no matter what my level of pain is.”;  “It’s not necessary for me to control my pain in order to handle my life well.”; and “My life is going well, even though I have chronic pain.”. These are important areas for clinicians to address during treatment. They’re about life – rather than pain. They’re about what makes life worth living. They’re about who are you, what does your life stand for, what makes you YOU, and what can you do despite pain. And these are important aspects of pain treatment: given none of us can claim a 100% success rate for pain reduction. Life is more than the absence of pain.

 

 

Craner, J. R., Sperry, J. A., Koball, A. M., Morrison, E. J., & Gilliam, W. P. (2017). Unique contributions of acceptance and catastrophizing on chronic pain adaptation. International Journal of Behavioral Medicine, 24(4), 542-551.

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56.

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine. 16(9), 606-13.

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

McCracken LM, Vowles KE, Eccleston C. (2004). Acceptance of chronic pain: component analysis and a revised assessment method. Pain. 107(1–2), pp159–66.

Quartana PJ, Campbell CM, Edwards RR. (2009) Pain catastrophizing: a critical review. Expert Reviews in Neurotherapy, 9, pp 745–58.

SullivanMLJ, Bishop SR, Pivik J. (1995). The Pain Catastrophizing Scale: development and validation. Psychological Assessment. 7:524–32.

Using more than exercise for pain management


In the excitement and enthusiasm for exercise as a treatment for persistent pain, I wonder sometimes whether we’ve forgotten that “doing exercise” is a reasonably modern phenomenon. In fact, it’s something we’ve really only adopted since our lifestyle has moved from a fairly physically demanding one, to one more sedentary (Park, 1994). I also wonder if we’ve forgotten that exercise is intended to promote health – so we can do the things we really want or need to do. Remembering, of course, that some people find exercise actually exacerbates their pain (Lima, Abner & Sluka, 2017), and that many folks experience pain as an integral part of their exercise (think boxing, marathon running, even going to a gym – think of the pain of seeing That Much Lycra & Sweat).

While it’s become “exercise as medicine” in modern parlance (Pedersen & Saltin, 2015; Sallis, 2009; Sperling, Sadnesara, Kim & White, 2017), I wonder what would happen if we unpacked “exercise” and investigated what it is about exercise that makes it effective by comparison with, say, activities/occupations that incorporate whole body movement?

One of the factors that’s often omitted when investigating coping strategies or treatments, especially lifestyle/self management ones, is the context and meaning people give to the activity. Context is about the when, where and how, while meaning is the why. Whether the positives (meaning, and values people place on it) outweigh the negatives (let’s face it, the lycra and sweat and huffing and puffing does not inherently appeal) are factors that enhance (or not) adherence to exercise and activity. One positive is a sense of flow, or “an optimal subjective psychological state in which people are so involved in the activity that nothing else seems to matter; the experience itself is so enjoyable that people will do it even at great cost, for the sheer sake of doing it”(Csikzentmihalyi, 1990, p. 4). I can think of a few things I lose myself in – reading a good book; fishing; paddling across a lake; photography; silversmithing; gardening…

Robinson, Kennedy & Harmon (2012) examined the experiences of flow and the relationship between flow and pain intensity in a group of people living with persistent pain. Their aim was to establish whether flow was an “optimal” experience of people with chronic pain. Now the methodology they used was particularly interesting (because I am a nerd and because this is one technique for understanding daily lived experiences and the relationships between variables over time). They used electronic momentary assessment (also known as ecological momentary assessment) where participants were randomly signaled seven times a day for one week to respond to a question about flow. Computationally challenging (because 1447 measurement moments were taken – that’s a lot of data!), although not using linear hierarchical modeling (sigh), they analysed one-way between group analyses of variance (ANOVA) to explore differences in pain, concentration, self-esteem, motivation, positive affect and potency across four named states “flow, apathy, relaxation and anxiety”. We could argue about both the pre-determined states, and the analysis, but let’s begin by looking at their findings.

What did they find?

People in this study were 30 individuals with persistent pain attending a chronic pain clinic. Their ages ranged from 21 – 77 years, but mean age was 51, and there were 20 women and 10 men (remember that proportion). People had a range of pain problems, and their pain had been present for on average 68 months.

The contexts (environments) in which people were monitored were at home, or “elsewhere”, and, unsurprisingly, 71% were at home when they were asked to respond. Activities were divided into self-care, work and leisure (slightly less time in work than in leisure or self care respectively).  The purpose of the activities were necessity (35%), desire (40%), or “nothing else to do” (18%). And most people were doing these things with either alone or with family, with very small percentages with friends, colleagues or the general public.

Now we’d expect that people doing things they feel so wrapped up in that nothing else matters should experience lower pain – but no, although this was hypothesised, pain intensity scores during flow trended lower – but didn’t actually reach significance. When we add the findings that concentration, self-esteem, motivation, and potency mean scores were highest in the flow state and mean scores were lowest in the apathy and anxiety states, we can begin to wonder whether engaging in absorbing activities has a major effect on pain intensity – or whether the value placed on doing the activities is actually the most important feature for people with pain. Interestingly, people felt their flow experiences while outside the home: this happened rather less often than being in the home, where apathy was most present. So… doing something absorbing is more likely to occur away from home, while remaining at home is associated with more apathy and perhaps boredom. Finally, flow occurred in work settings more than elsewhere, suggesting yet again that work is a really important feature in the lives of all people, including people living with pain. Of course that depends on the kind of work people are doing…and the authors of this paper indicate that people with persistent pain in this study have few places in which they can do highly engaging activities, even including work.

What does this mean for exercise prescription?

Engaging people in something that holds little meaning, has little challenge and may not be in the slightest bit enjoyable is probably the best way to lose friends and have clients who are “noncompliant”. I think this study suggests that activities that provide challenge, stimulation, movement possibilities, the opportunity to demonstrate and develop skill – and that people find intrinsically lead to flow – might be another way to embrace the “movement is medicine” mantra. I wonder what would happen if we abolished “exercises” and thought about “movement opportunities”, and especially movement opportunities in which people living with pain might experience flow? I, for one, would love to see occupational therapists begin to examine flow experiences for people living with pain and embraced the creativity these experiences offer for the profession.

 

 

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Collins.

Lima, L. V., Abner, T. S., & Sluka, K. A. (2017). Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. The Journal of physiology, 595(13), 4141-4150.

Park, R. (1994). A Decade of the Body: Researching and Writing About The History of Health, Fitness, Exercise and Sport, 1983-1993. Journal of Sport History, 21(1), 59-82. Retrieved from http://www.jstor.org/stable/43610596

Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports, 25(S3), 1-72.

Robinson, K., Kennedy, N., & Harmon, D. (2012). The flow experiences of people with chronic pain. OTJR: Occupation, Participation and Health, 32(3), 104-112.

Sallis, R. E. (2009). Exercise is medicine and physicians need to prescribe it!. British journal of sports medicine, 43(1), 3-4.

Sperling, L. S., Sandesara, P. B., Kim, J. H., & White, P. D. (2017). Exercise Is Medicine. JACC: Cardiovascular Imaging, 10(12).