Therapeutic approaches

When philosophy and evidence collide: is an occupation-focused approach suitable in pain management?


I have often described myself as a renegade occupational therapist: I like statistics, I think experimental research is a good way to test hypotheses, I don’t make moccasins (though I occasionally wear them!), I’m happy reading research and figuring out how I can apply findings into my clinical practice.

Occupational therapy is a profession that continues to evolve. The origins of occupational therapy lie back in the “moral” model of treatment for mental illness when advocates found that giving people things to do helped them become well (mind you, some of the reasons for admission to a “mental asylum” were things like “wandering womb”, novel reading, laziness and “female disease” read it here on Snopes). As time passed, occupational therapy was a way to “occupy” troops recovering from war wounds, and later, tuberculosis. At various points, occupational therapists have tried to enclose practice within prevailing models: anatomical, biomechanical, neurological. And then the scope broadens and the profession returns to “occupation” and all it means. Out of this latest movement, and informing occupational therapy practice today is the idea of “occupational science” – this is the “basic science” examining the factors that underpin occupational therapy practice (Yerxa, 1990).

Unlike most “basic sciences”, occupational science draws on areas of knowledge including anthropology, sociology and political science; all social sciences that bring their own philosophical biases to understanding social phenomena. Occupational science is about “what people do in daily life” – those routines, rituals, practices, customs and daily doings that support us in our roles, shape our place in the social world, and help us form an understanding of who we are in the world. Things like how we go about getting up, the way we serve a meal, the way we dress ourselves, how we go from one place to another, the hobbies and fun things we do – all fundamental building blocks of daily life. Occupational therapy, therefore, informed by occupational science, is focused on helping people participate in daily life as fully and equitably as possible, irrespective of health status, gender, ethnicity, religious belief, age and so on.

With a focus on not only helping people participate in occupations, but also using occupation as therapy, it’s not surprising to find a plurality of approaches to treatment. I have seen art used to help people with persistent pain represent the impact of pain on their sense of self – and to celebrate changes that have happened as a result of pain management. I have seen gardening used to help people become stronger, more confident to move and to reconnect with a hobby they had given up because of pain. I have seen people begin new hobbies (geocaching anyone?) as part of occupational therapy. I have used excursions to the local shopping mall to help people regain confidence and reduce their fear of crowded places where they might get bumped. Graded exposure is also an approach occupational therapists use to help people generalise their emerging skills to approach feared movements instead of avoiding them.

What I hope I don’t see is a return to a compensatory model for persistent pain. You know what I mean here: using gadgets or aids to “make life easier” when a person is dealing with persistent pain. Things like a special long-handled tool so people can pick something up from the floor – fine in a short-term situation like immediately post hip arthroplasty, but not so much when the problem is longstanding fear and avoidance. A special vacuum-cleaner so the person doesn’t have to bend – it’s so much easier yes, but it doesn’t address the underlying problem which can be remedied.

Why is a compensatory model not so good for persistent pain management? Well, because in most instances, though not all, the reason a person isn’t doing a movement when they’re sore is not because they cannot – but because that movement increases or might increase pain, and no-one really wants to increase pain, yeah? By providing a gadget of some sort, or even working through a way to avoid that movement, occupational therapists who use this sort of approach are ignoring the strong evidence that this reinforces avoidance as a strategy for managing pain, doesn’t address the underlying fear, and risks prolonging and actually reinforcing ongoing disability. This approach is harmful.

Helping people do things that might hurt isn’t a very popular idea for some clinicians and a lot of people living with persistent pain. It feels at first glance, like a really nasty thing to do to someone. BUT graded exposure is an effective, occupationally-focused treatment for fear of movement and fear of pain (Lopez-de-Uralde-Villaneuva, Munos-Garcia, Gil-Martinez, Pardo-Montero, Munoz-Plata et al, 2016). Used within an acceptance and commitment therapy model, graded exposure becomes “committed action” that’s aligned to values – and engaging in valued occupations is exactly what occupational therapy is all about.

Of course, not everyone enjoys this kind of work. That’s OK – because there are others who DO enjoy doing it! And it’s all in the way that it’s done – a framework of values, commitment, mindfulness and, that’s right, “chat therapy” – which some occupational therapists believe is right outside their scope of practice.

Now unless someone works in a vacuum, via some sort of mind-to-mind process, I cannot think of any therapist who doesn’t communicate with the person they’re working with. Humans communicate effortlessly and continuously. And “chat therapy” is about communicating – communicating skillfully, carefully selecting what to respond to and how, and focusing on clinical reasoning. Of course, if that’s ALL the treatment is about, then it’s not occupational therapy, but when it’s used in the aid of helping someone participate more fully in valued occupations using CBT, ACT, DBT or indeed motivational interviewing is one of the approaches occupational therapists can employ both within an occupation as therapy and occupation as outcome model.

I firmly believe that occupational therapists should follow an evidence base for their work. While I openly acknowledge the paucity of occupational therapy-specific research in persistent pain, particularly using occupation as therapy, there is plenty of research (carried out by other professions) to support approaches occupational therapists can adopt. After all, we already use developmental models, neurological models, sociological models, anthropological ones and yes, psychological ones. And that’s without venturing into the biomechanical ones! So it’s not an unfamiliar clinical reasoning strategy.

What makes occupational therapy practice in pain management absolutely unique are two things: a complete focus on reducing disability through enabling occupation, and a commitment to bringing skills developed “in clinic” outside into the daily lives and world of the people we are privileged to work with. What we should not do is focus on short-term outcomes like reducing (avoiding) bending with some new technique, while being ignorant of other occupational approaches. We are a fortunate profession because all of what we do is biopsychosocial, let’s not forget it.

 

López-de-Uralde-Villanueva, I., Muñoz-García, D., Gil-Martínez, A., Pardo-Montero, J., Muñoz-Plata, R., Angulo-Díaz-Parreño, S., . . . La Touche, R. (2016). A systematic review and meta-analysis on the effectiveness of graded activity and graded exposure for chronic nonspecific low back pain. Pain Medicine, 17(1), 172-188. doi:10.1111/pme.12882

Yerxa, E. J. (1990). An introduction to occupational science, a foundation for occupational therapy in the 21st century. Occup Ther Health Care, 6(4), 1-17. doi:10.1080/J003v06n04_04

Advertisements

Clinical reasoning and why models of low back pain need to be integrated


Clinical reasoning has been defined as “the process by which a therapist interacts with a patient, collecting information, generating and testing hypotheses, and determining optimal diagnosis and treatment based on the information obtained.” (thanks to https://www.physio-pedia.com/Clinical_Reasoning#cite_note-Higgs-1). The model or lens through which we do these processes naturally has a major influence on our relationship with the person, the information we think is relevant, the hypotheses we develop, and ultimately the problems we identify and how we treat them. No arguments so far, yes?

So when we come to thinking about pain, particularly where a “diagnosis” can’t be readily established – or where the treatment doesn’t directly address a proposed causal factor – clinical reasoning should be led by some sort of model, but how explicit is our model, really? And, what’s more, how well does the research support our model, and the relationships between variables?

I’m thinking about my approach as an occupational therapist where my interest in assessment is to identify why this person is presenting in this way at this time, and what might be maintaining their current predicament; and my aim is to identify what can be done to reduce distress and disability, while promoting participation in daily occupations (activities, things that need to be done or the person wants to do). For many years now I’ve used a cognitive behavioural model first developed by Dr Tim Sharp who has now moved into Positive Psychology. His reformulation of the cognitive behavioural model works from the “experience” of pain through to responses to that experience, but incorporates some of the cyclical interactions between constructs. The model doesn’t include inputs to the “experience” component from the nociceptive system – but it could.

Many other models exist. Some of them are quite recent – the STarT Back Tool, for example, provides a very simplified screening approach to low back pain that some people have identified as a clinical reasoning model. Another is by Tousignant-Laflamme, Martel, Joshi & Cook (2017), and is a model aimed at pulling all the various approaches together – and does so with a beautifully-coloured diagram.

But.

You knew there would be one! What I think these two models omit is to generate some relationships between the constructs, particularly the psychological ones. You see, while it’s a cyclical interaction, there are some relationships that we can identify.  And over the next few weeks I’ll be writing about some of the known associations, just to begin to build a picture of the relationships we can assess before we begin generating hypotheses.

For example, we know that the nervous system, and in particular our mind/brain, is never inactive and is therefore never a completely blank slate just waiting for information to come into it, but we also know there are relationships between the intensity/salience/novelty of a stimulus that attract attention, and that this competes with whatever cognitive set we have operating at the time (Legrain, Van Damme, Eccleston, Davis, Seminowicz & Crombez, 2009). So one relationship we need to assess is current contexts (and there are always many), and the times when a person is more or less aware of their pain.

Now, what increases the salience of a stimulus? For humans it’s all about meaning. We attribute meaning to even random patterns (ever seen dragons and horses in the clouds?!), so it’s unsurprising that as we experience something (or watch someone else experiencing something) we make meaning of it. And we generate meanings by relating concepts to other concepts – for a really good introduction to a very geeky subject, head here to read about relational frame theory. Relational frame theory is used to explain how we generate language and meanings by relating events with one another (The Bronnie translation! – for an easier version go here). Wicksell and Vowles (2015) describe this, and I’m going to quote it in full:

As described by relational frame theory, the theoretical framework underlying ACT, stimulus functions are continuously acquired via direct experiences, but also through their relations with other stimuli [5]. This implies that a behavioral response is not due to just one stimuli but rather the relational network of stimuli. Pain as an interoceptive stimulus is associated with a large number of other stimuli, and the actions taken depend on the psychological function(s) of that relational network of stimuli. A seemingly trivial situation may therefore elicit very strong reactions due to the associations being made: a relatively modest pain sensation from the neck trigger thoughts like “pain in the neck is bad,” which in turn are related to ideas such as “it may be a fragile disk,” and “something is terribly wrong,” that eventually lead to fatalistic conclusions like “I will end up in a wheelchair.” Thus, even if the initial stimulus is modest, it may activate a relational network of stimuli with very aversive psychological functions.

In other words, we develop these networks of meaning from the time we’re little until we die, and these mean any experience (situation, context, stimulus, event, action) holds meaning unique and particular to the individual. And these networks of meaning are constructed effortlessly and usually without any overt awareness. Each event/experience (yeah and the rest) then has further influence on how we experience any subsequent event/experience. So if you’ve learned that back pain is a Very Bad Thing, and you’ve done so since you were a kid because your Mother had back pain and took herself to the doctor and then stopped playing with you, you may have a very strong network of relationships built between low back pain, resting, healthcare, abandonment, sadness, anger, loneliness, fear, mother, father, pills, treatment – and the this goes on.

So when we’re beginning to construct a clinical reasoning model for something like low back pain we cannot exclude the “what does it mean” relationship. Every time someone experiences “ouch!” they’re processing a network of associations and relationships and behaviours that go on to influence their response to that experience – and affect attention to it and subsequent response to it.

Over 1000 words and I’ve not even started on emotions and pain!

Take home message: Even if we think we’re not addressing “psychological” stuff – we ARE. Omitting the “what does it mean to you?” and failing to factor that in to our clinical reasoning and subsequent treatment means we’re walking uphill on a scree slope. Oh, and telling someone they’re safe does not change those associations, especially if they’re longstanding. There’s more needed.

 

Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, & Crombez G (2009). A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain, 144 (3), 230-2 PMID: 19376654

Sharp, T. J. (2001). Chronic pain: A reformulation of the cognitive-behavioural model. Behaviour Research and Therapy, 39(7), 787-800. doi:http://dx.doi.org/10.1016/S0005-7967(00)00061-9

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485

Wicksell, R. K., & Vowles, K. E. (2015). The role and function of acceptance and commitment therapy and behavioral flexibility in pain management. Pain Management, 5(5), 319-322. doi:10.2217/pmt.15.32

Do pain management programmes really influence “doing” in daily life?


Disability and coping are two of the most important targets in persistent pain management, along with distress and pain intensity (the latter perhaps being the most difficult to influence). A question, however, is whether existing measures of disability truly capture the activities or occupations that people most value. For example, if house cleaning is just not my thing, even if my functioning improved over the course of a programme, would I choose to spend that new capability on vacuum-cleaning or out there in the garden?!

The Westhaven-Yale Multidimensional Pain Inventory (MPI)(Kerns, Turk & Rudy, 1985)  is a true workhorse of pain management measurement: It’s a measure that provides, via the subscales, an estimate of the complex inter-relationships involved in pain-related disability and distress. Three profiles of coping approach have been derived from the MPI indicating “Adaptive Coping” – the person is likely to continue to improve and engage in living well if they carry on as they are; “Interpersonally Distressed” – the person is experiencing difficulties with relationships and is feeling unsupported by others around them; and “Dysfunctional” – the person is struggling with their pain, and both disability and distress can feel overwhelming.

But the disability components of the MPI don’t really indicate the kinds of activities that people might be passionate about – or those that are relevant to their lives. The items are about general activities people “typically” do – in a North American setting. I know they’ve been validated in many different populations but they still represent a general idea of activity and function rather than the unique and idiosyncratic occupations that people do. (What's the difference? An occupation is the unique way I perform the important tasks of my day - the way I dash around the house while simultaneously cleaning my teeth, getting the dogs outside, making sure the curtains are opened and the appliances off just before I head out the door! We could call this "getting ready for work" but the way I do it, and the way you do it is probably very different!)

Why is that important? Well, because people value different occupations differently, and because values drive motivation, a broad measure of disability may not capture the true value of a pain management programme. And this is why the Canadian Occupational Performance Measure (COPM) (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990) is often used by occupational therapists to establish exactly what it is a person wants to be able to do. Goal Attainment Scaling is another option.

The study

In this study by Persson, Eklund, Lexell & Rivano-Fischer (2017), the aims were to assess longterm changes in MPI profiles over the course of a year; to look at associations between “Adaptive Coper” profiles at follow-up and improvements in occupational performance; and to look at factors at baseline that might be used to predict changes over time. Participants were, as usual, attending a tertiary pain management centre at a University hospital. They took part in a 21 day programme (oh the luxury of time!), and were seen by a team working together (oh the luxury of a co-located team!) including a psychologist, physician, physiotherapist, occupational therapist and social worker (oh for interprofessional teamwork!). The measures taken at pre and post were the MPI, COPM, and background demographic details.

Now here’s where the analysis gets pretty technical: dropout rates and pre-treatment differences amongst the MPI profiles were analysed using Matt-Whitney U, Kruskal-Wallis, chi-squared and independent t-test. Cross-tabs were used to describe the distribution of the MPI profiles. McNemar’s test was used to assess changes over time on each of the four profiles, and ultimately the participants were grouped into four profiles: never AC (Adaptive coper); losing AC; gaining AC, and stable AC, and these groupings were used to analyse associations between changes in MPI profile and changes on COPM from baseline to follow-up. And this, folks, is why occupational therapists NEED to learn statistical analyses! Because they went on to use univariate and multivariate logistic regressions to see whether demographic factors would predict these profiles at follow-up, incorporating satisfaction and performance scores on COPM.

What did they find?

More participants started the programme with a profile of dsyfunctional or interpersonally distressed than adaptive coper – and at both discharge and follow-up the adaptive coping group increased to be the largest subgroup. 20% of the participants ended up in the “gaining AC” group, 11% the “stable AC” group, 6% formed the “losing AC” group, and 63% were never in the adaptive coping group at all. Not so terrific in terms of broad outcome measures, but pretty consistent with other programmes around the world.

On the more individualised outcome measure of the COPM, people in the never AC group showed least clinically relevant improvement, both the stable AC and gaining AC groups showed more improvement on occupational performance and satisfaction with performance than the never AC group, while the stable AC group improved more than the losing AC group in terms of occupational performance changes.

Long-term changes showed those who started as AC were more likely to stay that way over time, and baseline scores for occupational performance were significantly associated with being AC at follow-up – in other words, people who felt OK about what they could do in terms of occupation, tended to become more capable and less disabled over time as measured by the MPI. More importantly, those people who had higher baseline scores on occupational satisfaction were 1.3 times more likely to shift to the AC group over time. “Clinically relevant improvements on performance and satisfaction with performance at 1-year follow-up, in occupations prioritized by the participants, were associated with having an AC profile at follow-up.” (p. 6).

Confidence in doing important occupations breeds confidence in other parts of living with persistent pain.

What does this all mean anyway?

Well, importantly, people who shifted from one of the other profiles to adaptive coping over a year showed clinically relevant improvements in occupational performance and satisfaction with performance – the authors suggest these findings show improvements on and satisfaction with “doing and performing” important occupations. Not being classified into adaptive coping at any time was associated with least improvement in occupational performance and satisfaction. There is an association between “doing/performing” and “coping/adapting” that hasn’t really been studied. Perhaps starting with things people enjoy instead of beating them over the head with things they’ve never been interested in could improve pain management outcomes. Pain management programmes DO influence doing in real life – if real life doing is used as therapy!

The authors also point out that “30–47% of participants who did not show an AC profile at follow-up still showed clinically relevant improvements on occupational performance and on
satisfaction with occupational performance.” (p. 8) This suggests that the MPI coping profiles only represent one part of the outcomes that are important to individuals: occupation being the individualised daily doings that people value very highly, and pointing to the need to explore individualised outcome measurement in more studies. Given that patient-centred pain management is based on individual goals, using only generic measures is likely to give misleading outcomes about treatment efficacy.

 

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

Persson, E., Eklund, M., Lexell, J., & Rivano-Fischer, M. (2017). Psychosocial coping profiles after pain rehabilitation: Associations with occupational performance and patient characteristics. Disability and Rehabilitation: An International, Multidisciplinary Journal, 39(3), 251-260.

Thinking the worst – and willingness to do things despite pain


Catastrophising, perhaps more than any other psychological construct, has received pretty negative press from people living with pain. It’s a construct that represents a tendency to “think the worst” when experiencing pain, and I can understand why people who are in the middle of a strong pain bout might reject any idea that their minds might be playing tricks on them. It’s hard to stand back from the immediacy of “OMG that really HURTS” especially when, habitually, many people who have pain try so hard to pretend that “yes everything is really all right”. At the same time, the evidence base for the contribution that habitually “thinking the worst” has on actually increasing the report of pain intensity, increasing difficulty coping, making it harder to access effective ways around the pain, and on the impact pain has on doing important things in life is strong (Quartana, Campbell & Edwards, 2009).

What then, could counter this tendency to feel like a possum in the headlights in the face of strong pain? In the study I’m discussing today, willingness to experience pain without trying to avoid or control that experience, aka “acceptance”, is examined, along with catastrophising and measures of disability. Craner, Sperry, Koball, Morrison and Gilliam (2017) recruited 249 adults who were seeking treatment at an interdisciplinary pain rehabilitation programme (at tertiary level), and examined a range of important variables pre and post treatment.  Participants in the programme were on average 50 years old, mainly married, and white (not a term we’d ever use in New Zealand!). They’d had pain for an average of 10.5 years, and slightly less than half were using opioids at the time of entry to the programme.

Occupational therapists administered the Canadian Occupational Performance Measure, an occupational therapist-administered, semi-structured interview designed to assess a person’s performance and satisfaction with their daily activities (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990). The performance scale was used in this study, along with the Chronic Pain Acceptance Questionnaire (one of my favourites – McCracken, Vowles & Eccelston, 2004); the Pain Catastrophising Scale (Sullivan, Bishop & Pivik, 1995), The Patient Health Questionnaire-9 (Kroenke, Spitzer & Williams, 2001); and The Westhaven-Yale Multidimensional Pain Inventory (Kerns, Turk & Rudy, 1985).

Now here’s where the fun begins, because there is some serious statistical analysis going on! Hierarchical multiple regression analyses is not for the faint-hearted – read the info about this approach by clicking the link. Essentially, it is a way to show if variables of your interest explain a statistically significant amount of variance in your Dependent Variable (DV) after accounting for all other variables. Or, in this study, what is the relationship between pain catastrophising, acceptance and pain severity – while controlling for age, gender, opioids use, and pain duration. The final step was to enter a calculation of the interaction between catastrophising and acceptance, and to enter this into the equation as the final step. A significant interaction suggests one of these two moderates the other – and this is ultimately captured by testing the slopes of the graphs. Complex? Yes – but a good way to analyse these complex relationships.

Results

Unsurprisingly, pain catastrophising and acceptance do correlate – negatively. What this means is that the more a person thinks the worst about their pain, the less willing they are to do things that will increase their pain, or to do things while their pain is elevated. Makes sense, on the surface, but wait there’s more!

Pain catastrophizing was significantly (ps < .01) and positively correlated with greater perceived pain intensity, pain interference, distress due to pain, and depression – and negatively correlated with occupational therapist-rated functioning. Further analysis found that only pain catastrophising (not acceptance) was associated with pain severity, while both catastrophising and acceptance predicted negative effect (mood) using the WHYMPI, but when the analysis used the PHQ-9, both pain catastrophising and pain acceptance uniquely predicted depressive symptoms.  When pain interference was used as the dependent variable, pain acceptance uniquely predicted the amount of interference participants experienced, rather than catastrophising. The final analysis was using the performance subscale of the COPM, finding that pain acceptance was a predictor, while catastrophising was not.

What does all this actually mean?

Firstly, I found it interesting that values weren’t used as part of this investigation, because when people do daily activities, they do those they place value on, for some reason. For example, if we value other people’s opinions, we’re likely to dress up a bit, do the housework and maybe bake something if we have people come to visit. This study didn’t incorporate contexts of activity – the why question. I think that’s a limitation, however, examining values is not super easy, however it’s worth keeping this limitation in mind when thinking about the results.

The results suggest that when someone is willing to do something even if it increases pain, or while pain is elevated, this has an effect on their performance, disability, the interference they experience from pain, and their mood.

The results also suggest that catastrophising, while an important predictor of pain-related outcomes, is moderated by acceptance.

My question now is – what helps someone to be willing to do things even when their pain is high? if we analyse the CPAQ items, we find things like “I am getting on with the business of living no matter what my level of pain is.”;  “It’s not necessary for me to control my pain in order to handle my life well.”; and “My life is going well, even though I have chronic pain.”. These are important areas for clinicians to address during treatment. They’re about life – rather than pain. They’re about what makes life worth living. They’re about who are you, what does your life stand for, what makes you YOU, and what can you do despite pain. And these are important aspects of pain treatment: given none of us can claim a 100% success rate for pain reduction. Life is more than the absence of pain.

 

 

Craner, J. R., Sperry, J. A., Koball, A. M., Morrison, E. J., & Gilliam, W. P. (2017). Unique contributions of acceptance and catastrophizing on chronic pain adaptation. International Journal of Behavioral Medicine, 24(4), 542-551.

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56.

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine. 16(9), 606-13.

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

McCracken LM, Vowles KE, Eccleston C. (2004). Acceptance of chronic pain: component analysis and a revised assessment method. Pain. 107(1–2), pp159–66.

Quartana PJ, Campbell CM, Edwards RR. (2009) Pain catastrophizing: a critical review. Expert Reviews in Neurotherapy, 9, pp 745–58.

SullivanMLJ, Bishop SR, Pivik J. (1995). The Pain Catastrophizing Scale: development and validation. Psychological Assessment. 7:524–32.

Minding your body: Interoceptive awareness, mindfulness and living well


We all grow up with a pretty good idea of what our body feels like; what normal is. It’s one of the first “tasks” of infancy, it seems, to work out what is me and what is not. When people experience a disturbance to the way their body moves or feels, it can take some time to get used to that new way of being. In pregnancy, where the body takes on a different shape and dimension, it’s not uncommon to bump into things because the new shape hasn’t yet sunk in!

This awareness of “what my body feels like” is called interoceptive awareness (IA), and I was intrigued to read this paper by Hanley, Mehling and Garland (2017) in which IA is examined in relation to dispositional mindfulness (DM). DM is thought to be the innate tendency to notice without judging or automatically reacting to what is going on. IA may be extremely sensitive in some people – for example, people with health anxiety might notice their sweaty palms and heart palpitations and then worry that they’re about to have a heart attack, or the same symptoms in someone with social anxiety might be experienced as indications to LEAVE RIGHT NOW because EVERYONE is looking at ME.

I’m not sure of research into IA in people with persistent pain, although I am positive it’s something that has been studied (see Mehling, Daubenmier, Price, Acree, Bartmess & Stewart, 2013). As a result, in my conclusions I’m going to draw from my experience working with those living with persistent pain, and extrapolate wildly!

This study aimed to establish the relationship between various items on two questionnaires used to measure IA and DM: the MAIA (Multidimensional Assessment of Interoceptive Awareness), and the FFMQ (Five Facet Mindfulness Questionnaire). The paper itself discusses the first measure as empirically derived and confirmed by focus groups, and having associations with less trait anxiety, emotional susceptibility and depression – in other words, high scores on this measure (awareness of body sensations and judging those sensations) are associated with important factors influencing our wellbeing. The second measure is described as “one of the most commonly used self-report measures of DM”. It consists of five scales thought to measure important aspects of mindfulness (observing, not reacting and acting with awareness).

Along with these two measures, the authors examined wellbeing, which essentially was defined as a tendency to accept oneself, have a purpose, manage the environment, develop good relationships, continue to grow as a person and be independent and autonomous. We could probably argue about these dimensions in view of what may be a cultural component (autonomy may not be highly favoured in some communities).

Recruitment was via mTurk, Amazon’s crowdsourcing website. As a result participants possibly don’t represent the kinds of people I would see in clinical practice. And half of the 478 participants were excluded because people didn’t complete all the questionnaires. I could quibble about this sample, so bear that in mind when you consider the results.

Results

Turning to the results, the first finding was a good correlation between all three questionnaires, with the FFMQ more strongly correlated with psychological wellbeing than the MAIA. But these researchers wanted more! So they carried out canonical correlation analysis, which is used to correlate the latent variables present in measurement instruments. It’s complicated, but what it can tell us is how underlying aspects of two unrelated measures might fit together. In this instance, the researchers found that two of the FFMQ (non-reacting and observing) were related to six of the eight MAIA factors (attention regulation, self-regulation, trusting, emotional awareness, body listening and noticing). They also found that FFMQ ‘non-judging’ and ‘acting with awareness’ were associated with MAIA ‘not worrying’ subscale.

What does this tell us? Well, to me it’s about grouping somewhat-related items together from two instruments to work out their contribution to something else. The authors thought so too, and therefore completed a further analysis (told you it was complicated!), to look at a two-step hierarchical multiple regression where the two sets of scales were entered into equations to see how much each contributed to the psychological wellbeing score. Whew!

What they found was interesting, and why I’m fascinated by this study despite its shortcomings.

What can we do with this info?

Being mindfully observant and non-reactive seems to be associated with a person’s ability to notice and control attention to what’s going on in the body. Makes sense to me – knowing what goes on in your body but being able to flexibly decide how much to be bothered about, and what you’re going to do about those sensations will make a difference to how well you can cope with things like fatigue, hunger, the need to change body position or to sustain a position when you’re focusing on something else – like hunting!

Apparently, being able to attend to body sensations is also part of regulating your emotional state, and if you can do this, you’ll generally experience your body as a safe and “trustworthy” place. And if you can do this when your body doesn’t feel so good yet still remain calm and accepting, this is a good thing. In the final analysis, these authors called the first cluster of statements “Regulatory awareness” – being aware of your body and regulating how you respond to it. The second cluster related more with non-judging and acting with awareness, so the authors called this “Acceptance in action”.

For people living with persistent pain, where the body often does not feel trustworthy and there’s an increased need to “ignore” or “let go” or “not judge” painful areas, it seems that one of the most important skills to learn is how to self regulate responses to IA. To take the time to notice all the body (not ignore the sore bits, nor obsess about the sore bits). This doesn’t come easily because I think for most of us, we’ve learned we need to notice pain – after all, ordinarily it’s helpful! The second part is to accept in action – in other words discriminating between unpleasant body sensations are should be worried about, and those not needing our attention is an adaptive skill. Perhaps mindfulness gives us better capabilities to discriminate between what needs to be taken into account, and what does not.

Interestingly, the least strongly associated response items were related to using words to describe what goes on in the body. For me this suggests experiential practices might be more useful to help people develop these two skills than simply talking about it. And suggests that maybe we could use meditative movement practices as a good way to develop these skills.

R.A. Baer, G.T. Smith, J. Hopkins, J. Krietemeyer, L. Toney, (2006) Using self-report assessment methods to explore facets of mindfulness, Assessment 13 27–45.

Hanley, A. W., Mehling, W. E., & Garland, E. L. (2017). Holding the body in mind: Interoceptive awareness, dispositional mindfulness and psychological well-being. Journal of Psychosomatic Research, 99, 13-20. doi:https://doi.org/10.1016/j.jpsychores.2017.05.014

W.E. Mehling, J. Daubenmier, C.J. Price, M. Acree, E. Bartmess, A.L. Stewart, (2013). Self-reported interoceptive awareness in primary care patients with past or current low back pain, Journal of Pain Research. 6

W.E. Mehling, C. Price, J.J. Daubenmier, M. Acree, E. Bartmess, A. Stewart, (2012) The multidimensional assessment of interoceptive awareness (MAIA), PLoS One 7  e48230.

Back to basics about psychosocial factors and pain – iv


Part of the definition of pain is that it is “a sensory and emotional experience” – in other words, emotions of the negative kind are integral to the experience of pain. Is it any wonder that poets and authors have written so eloquently about the anguish of unrelieved pain? As I write this, I’ve been pondering the way “psychosocial” has been used when discussing pain, as if those factors aren’t experienced by “normal” people, as if the way we feel about pain and the way people who struggle with their pain feel are two entirely different things.

Chris Eccleston, someone I admire very much, writes about a “normal psychology of chronic pain” and makes some incredibly useful points: that pain is a normal feature of human life. Pain is an everyday occurrence (watch kids playing in a playground – every 20 minutes kids communicate about pain, Fearon et al, 1996). In New Zealand one in five people report experiencing pain lasting six months or longer. Pain really is all around us – and it’s normal and indeed part of the experience itself, to feel negative emotions such as fear, anger, sadness, anxiety, and such when we’re sore.

So why have emotions been lumped in with “other factors” as part of the negative way psychosocial factors are interpreted today? I personally think it’s partly a hangover, in NZ at least, from the way our stoic forebears viewed “weakness”. There wouldn’t be many families in New Zealand who haven’t heard something like “man up”, or “big boys don’t cry”, or “pull yourself together” with great All Blacks who played on despite broken ribs or arms – who didn’t give in when they were injured being held up as examples we should emulate. At the same time pain isn’t given much space in our health professional training programmes – and when it is, it’s primarily viewed in a neuroanatomical way, as we’re taught about spino-thalamic tracts, and nociceptors, and not much else. In fact, I think the gate control theory is still being taught as the main theory in some programmes (despite it being revised and replaced with more sophisticated models).

So what is normal? I really like Acceptance and Commitment Therapy, as you’ve possibly noticed. Amongst one of the many reasons I like it so much is its view of suffering. Within ACT, being psychologically inflexible is the problem – that is, working hard to avoid or control experiences we don’t want, getting caught up in thoughts as if they’re Truth instead of our mind’s opinion of things, being attached to someone’s idea of who and what we are, living in the past or predicting the future, and failing as a result to take actions that line up with what our personal values are. When we get stuck thinking there’s only one way to deal with a situation, and when we forget about what’s important in our lives because we’re working so hard to avoid certain experiences – these aren’t seen as pathological, but instead are just part of the way our mind/language and experience tangle us up. The beauty is that there are ways out of being stuck but they’re counter-intuitive.

What do I mean? Well if we all have negative emotions about pain, why do only some of us struggle with that experience and get stuck? For some people it’s because they’re trying so hard not to feel pain that they spend time and energy doing things to control it and in the process stop doing things that matter. Think of the many appointments and the ups and downs of hope that it will all go away with this magic thing – then despair as it doesn’t work. Just the amount of time people spend waiting for and attending appointments can take time away from being with family, working, living…Now to me, this is not psychopathology. This is what normal minds do – try to fix a problem using strategies that have always worked in the past.

At the same time, given pain is a negative experience, doesn’t it make sense to monitor what went on last time you tried to lift that box, go to work, drive the car… AND doesn’t it make sense to anticipate what might go wrong if you try it again? This isn’t about being depressed, anxious or any other kind of pathology – this is just what we’ve learned to do, and our minds are trying incredibly hard to make it work again.

When I mentioned that a solution might be counter-intuitive, what I mean is recognising that trying to control or avoid an experience that comes with us wherever we go because it’s part of us, can trip us up. Instead, we might do better if we soften our attempts to control or avoid our experience of pain. Maybe spending time exploring pain and doing things alongside pain is possible – especially if the things we want to do are important to us. Don’t believe me? Think about marathon runners – they feel the pain (hit the wall) and still keep running! Why? Because it’s important to them to get to the end.

Now I’m not suggesting that ALL people will find this approach helpful, and I’m NOT denying that many people with persistent pain experience depression, anxiety, rotten sleep and generally feel demoralised. What I AM saying is that if we approach everyone with the misguided idea that psychosocial factors exist only in “those people”, we’re wrong. Any one of us will experience negative emotions if pain is present – and even more if pain persists. This is a normal response to a challenging and inherently aversive experience. Of course, if we’ve experienced depression, adverse life events, turmoil in our home and work life, and the stigma of not being believed, the potential to then become angry, depressed, and fed up is only greater. Let’s not make a negative experience worse by stigmatising people with the notion that “psychosocial factors” makes them any different from anyone else.

 

Eccleston, C. (2011). A normal psychology of chronic pain. Psychologist, 24(6), 422-425.

Fearon, I., McGrath, P.J., Achat, H. (1996). ‘Booboos’: The study of everyday pain among young children. Pain, 68, 55-62.

Vowles, K. E., Witkiewitz, K., Levell, J., Sowden, G., & Ashworth, J. (2017). Are reductions in pain intensity and pain-related distress necessary? An analysis of within-treatment change trajectories in relation to improved functioning following interdisciplinary acceptance and commitment therapy for adults with chronic pain. Journal of consulting and clinical psychology, 85(2), 87.

Conversations about cannabis for chronic pain


The debate about cannabis and derivatives for persistent pain continues to grow in New Zealand, and elsewhere in the world. Many people I’ve treated and who are living with persistent pain say they like to use cannabis (in a variety of forms) to help with pain intensity and sleep, adding their voices to those wanting “medicinal” cannabis to be approved. In the few patients I’ve worked with who have managed to obtain a cannabis product (in NZ it has to be legally prescribed and will generally be in the form of Sativex or similar) the effect doesn’t seem as profound as the real thing (whether smoked, vaped, or in edibles).

Here’s my current position, for what it’s worth. Right now I think cannabis legislation needs an overhaul. Cannabis doesn’t seem to fit into the same class as synthetic drugs (often called “herbal highs” or synthetic “cannabis”) – for one, the plant probably contains a whole lot of substances that have yet to be fully analysed, and for another, I have yet to see a death reported from cannabis use, yet in Auckland, NZ, alone this year there have been around 9 people who have died from taking the synthetic substance, whatever it is. Cannabis seems to cause less harm than legal substances like alcohol and tobacco, and in many places in the world it’s been legalised with some interesting effects on use of opioids.

Ever since Professor David Nutt visited New Zealand a few years back, I’ve been convinced it’s time for a rethink on cannabis laws, but at the same time I’m not ready to support wholesale legalisation of “medical” marijuana. Here are a few reasons why:

  • When a doctor prescribes a drug, he or she is able to rely on the manufacturer making a consistent product, with a consistent amount of “active” ingredients, and a consistent quality. At present, with the exception of the two versions available in New Zealand, this can’t be guaranteed. Plants vary in the combination of active chemicals in them, and storage and age of the product influence the availability of those chemicals when inhaled or ingested. Just as we don’t suggest people go and grow their own opium poppies because we know that opioids are effective analgesics, I don’t think it’s time to allow people to grow their own cannabis for medicinal purposes, such as treating pain. A doctor can’t know just how much of a dose a person can get because in NZ we don’t yet have a controlled environment for cannabis production.
  • When a doctor prescribes a drug, he or she is also guided by the indications for use. So, although some medical practitioners prescribe “off-label” use for medications (a good example is nortriptyline, an antidepressant used often for pain reduction), generally there are good double-blinded, randomised controlled trials to determine whether the active drug is more effective than placebo. When we read about cannabis use for medicinal reasons we hear of its use for cancer (mainly nausea, but also pain), neuropathic pain, and in the general media we hear of its use for migraine, period pain, abdominal pain, fibromyalgia, osteoarthritis – there’s very few pain disorders that cannabis isn’t seen to be appropriate. But the truth is, we don’t really know which kind of pain (the underlying mechanism) will respond, and what pains don’t respond. It’s still a bit of a mystery – mind you, this is not any different from other medications for pain for which N=1 seems to be the mantra.

Why might I support a change to marijuana laws?

Well, an interesting study from the Northeastern United States, and published in the journal Pain, looked at the perspectives of people enrolled in legal medical marijuana clinics. It was quite a large study of 984 people, so should represent a good cross-section of those using the drug within a legal system. Participants were asked to complete an online survey, and their responses were analysed by a psychologist who was “not a cannabinoid expert”, arranging the data into themes and subthemes. (As an aside, apparently this was carried out using a “Grounded Theory perspective” based on Corbin and Strauss – BUT essentially the researchers didn’t follow grounded theory methodology throughout, and instead it should be called a thematic analysis using inductive coding. Pedant, yes!). The data was then examined to quantify the responses (another violation of GT methodology), and re-examined by another co-author for verification.

What they found was a group of people, over half women, with 2/3 indicating they’d been diagnosed with chronic pain by a medical professional. Diagnoses varied, but most (91%) had low back and neck pain, 30% with neuropathic pain, 23% with postsurgical pain, nearly 22% with abdominal pain, 20% with chronic pain after trauma/injury, 7% with cancer pain and 5% with menstrual pain.  Most people smoked cannabis either by joint, pipe or bong; some used a vaporiser, some had edibles or a tincture, and least, some sort of ointment.

The participants indicated it was on average 75% effective at reducing/treating symptoms, which is extraordinary when you realise that traditional forms of medication for neuropathic pain may reduce pain by 50% in around 1  in 4 people (Woolf, 2010). Participants spent around $3118 each year, but this was skewed because concentrates cost $3910, while topicals were $814. Joints were more expensive than vaporised product ($260 different!).

Analysing the positives of cannabis, participants reported pain relief, or at least being able to tolerate the pain more easily; while sleep benefits was the next most significant theme. Participants were encouraged that cannabis doesn’t have overdose potential, it’s natural, there are a wide range of strains with different characteristics, and limited potential for dependence.

There were numerous other positive aspects to using cannabis this way, according to the participants: things like “feeling normal”, “I am more active and able to do things I want”, being “distracted” from the pain, “able to focus”, and “able to relax”.

Negative perspectives included the cost (too expensive – in NZ Sativex is around $1000 a month – not covered by NZ pharmaceutical subsidies); some people didn’t like the smell, the effects on lungs and breathing, appetite changes (and gaining weight), and some emotional effects like anxiety or paranoia. Stigma and judgement by others also features, as did the difficulty accessing the drug, and conflict about the different laws applying to cannabis use – noting that the US has different federal and state laws.

Overall, the responses from these participants suggest a benign, mainly positive response to a drug, with negatives primarily around the social aspects – stigma from health providers, other people thinking of the participants as stoners, the legal situation and so on. For me, the limitations of this study really preclude any major judgement as to benefit or otherwise. We only know what this group of people believed, they have a vested interest in promoting benefits because negatives won’t support their belief that this is a viable treatment option, we don’t know the effect on function (particularly objective data), and we have no way of verifying the diagnoses individuals reported as the reason for prescription.

My conclusion?

It’s way past time to discuss cannabis use, health risks and health benefits. To have an open discussion about use for medicinal reasons, we need to remove the current barrier: the legal situation. While people have a vested interest in promoting the benefits over risks or adverse effects, we’re not going to have a very clear picture of what happens with ongoing use. I don’t support the use of cannabis as a medicinal product – to me there are far too many unknowns, and I think we risk wedging open a gate that has, until now, been useful for limiting the risk from pharmaceutical harms. We need to subject cannabis to the same level of rigour as any other pharmaceutical product being introduced to the market.

On the other hand, I think removing legal barriers to recreational use is about balancing the benefits and harms of this substance against other substances used for similar reasons. Alcohol and tobacco are well-known for harmful effects. Prohibition of alcohol did not work. Tobacco smoking is reducing over time courtesy of a committed campaign documenting harms, as well as raising the price via taxation. We can’t campaign around health harms for a product that isn’t legal. We can’t establish useful regulation over who produces it, who can buy it, where it can be used, the effects on work injury/vehicle injury, we can’t represent the undoubted benefits, and we look, to many people, to hold a double-standard.

And sneaking cannabis use in under the guise of “medicinal” use just isn’t on, in my humble opinion. Let’s not put medical practitioners in an unenviable situation where they’re asked to prescribe a product that is not yet examined to the level we expect for every other pharmaceutical product on the market. Let’s spend some precious research funding to establish WHO cannabis helps, WHAT it helps with, and HOW it helps – and most importantly, let’s look at whether it helps produce outcomes that surpass other approaches to persistent pain. We need to face it, currently our treatments are not very good.

 

Piper, B. J., Beals, M. L., Abess, A. T., Nichols, S. D., Martin, M. W., Cobb, C. M., & DeKeuster, R. M. (2017). Chronic pain patients’ perspectives of medical cannabis. Pain, 158(7), 1373-1379.

Woolf, C: (2010). Review: Overcoming obstacles to developing new analgesics, Nature Medicine (Supplement); 16,11: 1241 – 47

Returning to work, good or bad?- a very complex question


One of the main reasons returning to work is a priority in many healthcare systems is simply that compensation and off-work benefits is the most costly portion of the bill for people with ill health. This naturally leads to a strong emphasis in most rehabilitation, especially musculoskeletal rehabilitation in New Zealand, to help people return to work as soon as practicable. At times the process can be brutal. In my own case, after 18 months of working part-time due to post-concussion symptoms after a “mild” traumatic brain injury, I had the hard word put on me to get back to my job or I’d be sent to work back on the wards (after having spent most of my clinical career working in pain management). Not quite the supportive approach I needed when I was having to sleep for at least an hour every afternoon!

I can well remember the pressure of trying to maintain my work output to the satisfaction of my manager, keep my home responsibilities going (I had teenaged children at the time), manage all the paperwork required just to be part of a rehabilitation system, maintain my relationship which was strained just because I had no energy to play or have fun the way I used to. Oh and I had weekly rehabilitation appointments to top it all off! Not easy to keep your cool when everything seems balanced on a knife-edge.

Yet, despite the challenges of going back to work, most accounts of recovery from musculoskeletal pain find that returning to work forms a crucial element in maintaining long-term gains. The study that sparked this post is a good example: Michael Sullivan and colleagues, set in Montreal, Canada, found that returning to work helps to maintain treatment gains in people with whiplash injury. Of the 110 people enrolled in this study, 73 participants returned to work by the end of one year, while the remaining 37 remained off work. Using regression analysis, the researchers found that the relationship  between return to work and maintaining treatment goals remained significant even when confounds such as pain severity, reduced range of movement, depression and thinking the worst (catastrophising) were controlled. What this means is that something about those who returned to work seemed to help them achieve this, and it wasn’t the usual suspects of low mood or that the injury was more severe. What is even more striking is that those who didn’t return to work actually reported worsening symptoms.

There are plenty of arguments against this finding: could it be that those who didn’t return to work just didn’t respond as well to the treatment in the first place? Well – the authors argue no, because they controlled for the things that should have responded to treatment (eg range of movement, mood). Participants in the study returned to work 2 months on average after completing their treatment, and final measurement was on average 10 months later suggesting that it was something to do with being at work that made a difference.

In their discussion, the authors suggest that perhaps those who didn’t return to work were overall less physically active than those who did, compromising their recovery potential. They also note that being out of work is known to be associated with poorer mental health, so perhaps that explains the difference at the end of the trial period. In addition, they point out that perhaps ongoing stress related to having to handle disability claims processes, perhaps even the financial stress of being unable to work might have been influential.

It’s this last point that I think is interesting. There is no doubt that people who encounter the disability systems that fund their treatment and replace their income feel like their autonomy and independence has gone. They feel their world is being manipulated at the whim of case managers, treatment providers, assessing doctors, and even their family.  A sense of injustice can be detrimental to outcomes for people with whiplash, as Sullivan and colleagues showed some years ago (Sullivan, Thibault, Simmonds, Milioto et al 2009), and we know also that social judgements made about people who experience persistent pain are often negative and exert an influence on the experience of pain itself (Bliss, 2016; Schneider et al, 2016).

Working is really important to people – even in a job you don’t especially enjoy, there are important reasons you keep going (even if it’s only for the money! Money in the hand means food for you and yours, power for the lighting and heating, and even a little bit left over for jam on your bread!). In addition to the money, the most commonly asked question when you’re introduced to someone is “and what do you do for a job?” It’s a way of categorising a person, as much as we hate that idea. Work gives us social contact, routine, purpose and allows us a way to demonstrate competence. Without the anchor of working, many people who live with persistent pain feel the burden of social judgement “who are you?”, of ongoing bureaucracy (filling in paperwork), of repeated assessments to justify not being at work, of constantly being asked to attend appointments, of never feeling like time is their own. Balancing the demands of a system that judges you negatively because you are “unfit” against the demands of family and your own needs is an incredibly difficult process – but then again, so is the process of returning to a job where you fear you’ll fail and experience That Pain Again, and where, if you fail, you could lose that job entirely.

I don’t have an answer to how we can make this process easier. I do know that early return to work can be positive if handled well – but handled poorly, can be an extremely unpleasant and stressful process. Vocational rehabilitation providers need to understand both acute and persistent pain. They also need to carefully assess the psychosocial aspects of a job, not just the biomechanical demands. And someone needs to represent the needs of the person living with persistent pain and help them balance these demands carefully.

 

Bliss, Tim VP, et al. (2016)”Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain.” Nature Reviews Neuroscience .

De Ruddere, Lies, et al. (2016)”Patients are socially excluded when their pain has no medical explanation.” The Journal of Pain 17.9 : 1028-1035.

McParland, J. L., & Eccleston, C. (2013). “It’s not fair”: Social justice appraisals in the context of chronic pain. Current Directions in Psychological Science, 22(6), 484-489.

Schneider, Peggy, et al. “Adolescent social rejection alters pain processing in a CB1 receptor dependent manner.” European Neuropsychopharmacology 26.7 (2016): 1201-1212.

Sullivan, M. J., Thibault, P., Simmonds, M. J., Milioto, M., Cantin, A. P., Velly, A. M., . . . Velly, A. M. (2009). Pain, perceived injustice and the persistence of post-traumatic stress symptoms during the course of rehabilitation for whiplash injuries. Pain, 145(3), 325-331.

Sullivan, M., Adams, H., Thibault, P., Moore, E., Carriere, J. S., & Larivière, C. (2017). Return to work helps maintain treatment gains in the rehabilitation of whiplash injury. Pain, 158(5), 980-987. doi:10.1097/j.pain.0000000000000871

Mulling over the pain management vs pain reduction divide


I’ve worked in persistent pain management for most of my career. This means I am biased towards pain management. At times this creates tension when I begin talking to clinicians who work in acute or subacute musculoskeletal pain, because they wonder whether what I talk about is relevant to them. After all, why would someone need to know about ongoing management when hopefully their pain will completely go?

I have sympathy for this position – for many people, a bout of tendonosis, or a strained muscle or even radicular pain can ebb away, leaving the person feeling as good as new. While it might take a few months for these pain problems to settle, in many instances there’s not too much need for long-term changes in how the person lives their life.

On the other hand, there are many, many people who either don’t have simple musculoskeletal problems (ie they’re complicated by other health conditions, or they have concurrent issues that make dealing with pain a bit of a challenge), or they have conditions that simply do not resolve. Good examples of these include osteoarthritis (hip, knee, shoulder, thumbs, fingers) and grumbly old lower back pain, or peripheral neuropathy (diabetic or otherwise). In these cases the potential for pain to carry on is very present, and I sometimes wonder how well we are set up to help them.

Let’s take the case of osteoarthritis. Because our overall population is aging, and because of, perhaps, obesity and inactivity, osteoarthritis of the knee is becoming a problem. People can develop OA knee early in their life after sustaining trauma to the knee (those rugby tackles, falling off motorcycles, falling off horses, running injuries), or later in life as they age – so OA knee is a problem of middle to later age. People living with knee OA describe being concerned about pain, especially pain that goes on after they’ve stopped activities; they’re worried about walking, bending and maintaining independence – and are kinda pessimistic about the future thinking that  “in 10 years their health would be worse and their arthritis would be a major problem” (Burks, 2002).

To someone living with osteoarthritis, especially knee osteoarthritis, it can seem that there is only one solution: get a knee replacement. People are told that knee replacements are a good thing, but also warned that knee replacements shouldn’t be done “too soon”, leaving them feeling a bit stranded (Demierre, Castelao & Piot-Ziegler, 2011). Conversations about osteoarthritis are not prioritised in healthcare consultations – in part because people with knee osteoarthritis believe that knee pain is “just part of normal aging”, that there’s little to be done about it, and medications are thought to be unpleasant and not especially helpful (Jinks, Ong & Richardson, 2007).

I wonder how many healthcare professionals feel the same as the participants in the studies I’ve cited above. Do we think that knee OA is just something to “live with” because the problem is just part of old age, there’s an eventual solution, and meanwhile there’s not a lot we can do about it?

When I think about our approach to managing the pain of osteoarthritis, I also wonder about our approach to other pains that don’t settle the way we think they should. Is part of our reluctance to talk about pain that persists because we don’t feel we know enough to help? Or that we feel we’ve failed? Or that it’s just part of life and people should just get on with it? Is it about our feelings of powerlessness?

In the flush of enthusiasm for explaining the mechanisms of pain neurobiology, have we become somewhat insensitive to what it feels like to be on the receiving end when the “education” doesn’t reduce pain? And what do we do when our efforts to reduce pain fail to produce the kind of results we hope for? And the critical point, when do we begin talking about adapting to living well alongside pain?

What does a conversation about learning to adapt to pain look like – or do we just quietly let the person stop coming to see us once we establish their pain isn’t subsiding? I rather fancy it might be the latter.

Here’s a couple of thoughts about how we might broach the subject of learning to live with persistent pain rather than focusing exclusively on reducing pain:

  • “What would you be doing if pain was less of a problem?” My old standby because in talking about this I can begin to see underlying values and valued activities that I can help the person look at starting, albeit maybe doing them differently.
  • “What do you think are the chances of this pain completely going away?” Some might say this is about expectancy and I’m setting up a “nocebic” effect, but I argue that understanding the person’s own perspective is helpful. And sometimes, when a person has persistent pain and a diagnosis like osteoarthritis, their appraisal is less about catastrophising and more about holding a realistic view about their own body. It’s not about the appraisal – it’s about what we do about this. And we can use this perspective to built confidence and increase the importance of learning coping strategies.
  • “If I could show you some ways to deal with pain fluctuations, would you be interested in learning more?” All episodes of pain that persists will have times when pain is more intense than others – flare-ups are a normal part of recovering from, and living with persistent pain. Everyone needs to know some ways of going with, being flexible about or coping with flare-ups. I teach people not to focus exclusively on reducing pain during these flare-up periods. This is because even during rehabilitation we don’t want to use pain as a guide (it can be a cruel task-master). We know that rehabilitation can increase (temporarily) pain while the body habituates to new movement patterns, the brain gets used to new input, and the homunculus gets redefined. It’s great to be able to teach strategies that increase the sense of safety, security and down-regulation that can be lost in the initial onslaught of pain.

To summarise, not all pain problems settle. We can help everyone to be more resilient if we begin talking about ways of coping with flare-ups even during subacute pain, particularly if we avoid an excessive focus on trying to avoid them. Instead, we can begin to help people feel confident that flare-ups always settle down, and that they can manage them effectively by using effective self management.

 

Burks, K. (2002). Health concerns of men with osteoarthritis of the knee. Orthopaedic Nursing, 21(4), 28-34.

Cohen, E., & Lee, Y. C. (2015). A mechanism-based approach to the management of osteoarthritis pain. Current Osteoporosis Reports, 13(6), 399-406.

Demierre, M., Castelao, E., & Piot-Ziegler, C. (2011). The long and painful path towards arthroplasty: A qualitative study. J Health Psychol, 16(4), 549-560. doi:10.1177/1359105310385365

Jinks, C., Ong, B. N., & Richardson, J. (2007). A mixed methods study to investigate needs assessment for knee pain and disability: Population and individual perspectives. BMC Musculoskeletal Disorders, 8, 59.

…and now what we’ve all been waiting for: What do to about central sensitisation in the clinic


For the last couple of weeks I’ve posted about central sensitisation; what it is, and how to assess for it. Today I’m going to turn to the “so what” question, and talk about what this might mean when we’re in the clinic.  Remember that most of this material comes from Jo Nijs’ recent talks at the New Zealand Pain Society.
Firstly, remember that pain is an experience that people have, underpinned by neurobiology, but also, depending on the level of analysis, on interactions with others, on systems and how they work, on culture, on individual experiences, and of course, on interacting within a body within an environment or context. Everything I say from here on is based on these assumptions.

The first point Jo Nijs makes is that when we know a bit more about the neurobiology of persistent pain associated with central sensitisation, we can use this knowledge wisely when we help someone make sense of their pain. This doesn’t mean wholesale and broadcast “I-will-tell-you-all-I-know-about-pain-neurobiology-because-I-know-you-need-to-know-it-because-I-know-it-and-think-it’s-important” which is, truth to tell, a lot more about the know-it-all than the person in front of them! We need to earn the right to give information – that means establishing that we’ve heard the other person’s story and the current meanings they’ve made from their experience. It also means asking permission to share new information. It means thinking about WHY we want to share new information.

So what if the person doesn’t use the same groovy language we use to describe his or her understanding?! So what if they’ve got some of the newer ideas slightly skewed. In the end, what’s important is that the person understands these things:

  • Pain isn’t a direct reflection of what’s happening in the tissues.
  • Pain can be influenced by many things, some of which are physical forces (heat, pressure and so forth), some of which are ideas, and some are emotions. And there are a bunch of other variables that can influence the experience, including what else is going on around the person.
  • The brain is intimately involved with our experience of pain, and it’s a two-way street from body to brain and brain to body.
  • Persistent pain is more about neurobiology than tissue damage per se (but not exclusively about neurobiology).

Our job is to make sure the person understands these things, rather than our job being about “educating” people. The end result matters, rather than any particular process.

If we look at the evidence for helping people reconceptualise their pain, there’s plenty to show that this approach is useful – it’s been a key tenet of a self-management cognitive behavioural approach to pain management since at least the late 1970’s. The later research (from Butler, Moseley and Louw et al) is simply looking at this approach within a slightly different cohort and in a different context. Rather than being integrated with an interdisciplinary pain management programme, research from these guys shows that physiotherapists (in particular) can deliver this kind of information very effectively – and that it helps reduce the fear and subsequent efforts to avoid pain (such as not moving, seeking healthcare, and being worried about pain). Yay!

It’s true that there are many different ways to influence the descending modulatory system, and release endorphins. One of them is to help people understand their pain and be more confident about moving. Another is to place hands on the person – hence massage therapy, manual therapies, manipulations and so on. Nijs believes hands on therapy has best effect after you’ve gone through some of the reconceptualisation that’s often needed (Bishop, Torres-Cueco, Gay, Lluch-Girbes, Beneciuk, & Bialosky, 2015).

Similar arguments can be made for considering sleep management and stress management as an integral part of pain management. (To be perfectly honest, I always thought this was part of what we did…). So here’s the argument: we know most people with persistent pain experience rotten sleep. We also know that people are stressed by their experience of pain. Because poor sleep is associated with increased activation of glia in the prefrontal cortex, amygdala and hippocampus, and therefore are pro-inflammatory, pain is often increased after a poor night’s sleep. Sleep medications interfere with the sleep architecture, so it’s useful to consider nonpharmacological approaches to sleep management.

Three strategies to consider:

  • CBT for insomnia – here’s one resource to use
  • ACT or acceptance and commitment therapy – I’ve written a great deal about ACT, just use the search function on this blog for more
  • Exercise – OMG yes, exercise is effective! (just not right before bedtime, kthx)

Stress management is tougher. We can’t avoid experiencing stress – and neither can we live in a bubble where we don’t ever get exposed to stress. Instead, we probably all could do with learning multiple ways of managing stress. Things like realistic evaluations of the situation, increasing our capabilities for regulating our response to stress via biofeedback if need be, and using mindfulness as a strategy for being with stress instead of fighting against it, or folding beneath it.

I haven’t cited many references in this post – not because there aren’t many, but because there are SO many! And I’ll post more next week when I start looking at the rather sexy neurobiological examinations of processes used in pain management for years (yes, we’ve been doing it for a long time, we now have great explanations for how these things might work – though effect sizes are still small.)

 

Bishop, M. D., Torres-Cueco, R., Gay, C. W., Lluch-Girbés, E., Beneciuk, J. M., & Bialosky, J. E. (2015). What effect can manual therapy have on a patient’s pain experience?. Pain, 5(6), 455-464.