Clinical reasoning

Clinical reasoning and why models of low back pain need to be integrated


Clinical reasoning has been defined as “the process by which a therapist interacts with a patient, collecting information, generating and testing hypotheses, and determining optimal diagnosis and treatment based on the information obtained.” (thanks to https://www.physio-pedia.com/Clinical_Reasoning#cite_note-Higgs-1). The model or lens through which we do these processes naturally has a major influence on our relationship with the person, the information we think is relevant, the hypotheses we develop, and ultimately the problems we identify and how we treat them. No arguments so far, yes?

So when we come to thinking about pain, particularly where a “diagnosis” can’t be readily established – or where the treatment doesn’t directly address a proposed causal factor – clinical reasoning should be led by some sort of model, but how explicit is our model, really? And, what’s more, how well does the research support our model, and the relationships between variables?

I’m thinking about my approach as an occupational therapist where my interest in assessment is to identify why this person is presenting in this way at this time, and what might be maintaining their current predicament; and my aim is to identify what can be done to reduce distress and disability, while promoting participation in daily occupations (activities, things that need to be done or the person wants to do). For many years now I’ve used a cognitive behavioural model first developed by Dr Tim Sharp who has now moved into Positive Psychology. His reformulation of the cognitive behavioural model works from the “experience” of pain through to responses to that experience, but incorporates some of the cyclical interactions between constructs. The model doesn’t include inputs to the “experience” component from the nociceptive system – but it could.

Many other models exist. Some of them are quite recent – the STarT Back Tool, for example, provides a very simplified screening approach to low back pain that some people have identified as a clinical reasoning model. Another is by Tousignant-Laflamme, Martel, Joshi & Cook (2017), and is a model aimed at pulling all the various approaches together – and does so with a beautifully-coloured diagram.

But.

You knew there would be one! What I think these two models omit is to generate some relationships between the constructs, particularly the psychological ones. You see, while it’s a cyclical interaction, there are some relationships that we can identify.  And over the next few weeks I’ll be writing about some of the known associations, just to begin to build a picture of the relationships we can assess before we begin generating hypotheses.

For example, we know that the nervous system, and in particular our mind/brain, is never inactive and is therefore never a completely blank slate just waiting for information to come into it, but we also know there are relationships between the intensity/salience/novelty of a stimulus that attract attention, and that this competes with whatever cognitive set we have operating at the time (Legrain, Van Damme, Eccleston, Davis, Seminowicz & Crombez, 2009). So one relationship we need to assess is current contexts (and there are always many), and the times when a person is more or less aware of their pain.

Now, what increases the salience of a stimulus? For humans it’s all about meaning. We attribute meaning to even random patterns (ever seen dragons and horses in the clouds?!), so it’s unsurprising that as we experience something (or watch someone else experiencing something) we make meaning of it. And we generate meanings by relating concepts to other concepts – for a really good introduction to a very geeky subject, head here to read about relational frame theory. Relational frame theory is used to explain how we generate language and meanings by relating events with one another (The Bronnie translation! – for an easier version go here). Wicksell and Vowles (2015) describe this, and I’m going to quote it in full:

As described by relational frame theory, the theoretical framework underlying ACT, stimulus functions are continuously acquired via direct experiences, but also through their relations with other stimuli [5]. This implies that a behavioral response is not due to just one stimuli but rather the relational network of stimuli. Pain as an interoceptive stimulus is associated with a large number of other stimuli, and the actions taken depend on the psychological function(s) of that relational network of stimuli. A seemingly trivial situation may therefore elicit very strong reactions due to the associations being made: a relatively modest pain sensation from the neck trigger thoughts like “pain in the neck is bad,” which in turn are related to ideas such as “it may be a fragile disk,” and “something is terribly wrong,” that eventually lead to fatalistic conclusions like “I will end up in a wheelchair.” Thus, even if the initial stimulus is modest, it may activate a relational network of stimuli with very aversive psychological functions.

In other words, we develop these networks of meaning from the time we’re little until we die, and these mean any experience (situation, context, stimulus, event, action) holds meaning unique and particular to the individual. And these networks of meaning are constructed effortlessly and usually without any overt awareness. Each event/experience (yeah and the rest) then has further influence on how we experience any subsequent event/experience. So if you’ve learned that back pain is a Very Bad Thing, and you’ve done so since you were a kid because your Mother had back pain and took herself to the doctor and then stopped playing with you, you may have a very strong network of relationships built between low back pain, resting, healthcare, abandonment, sadness, anger, loneliness, fear, mother, father, pills, treatment – and the this goes on.

So when we’re beginning to construct a clinical reasoning model for something like low back pain we cannot exclude the “what does it mean” relationship. Every time someone experiences “ouch!” they’re processing a network of associations and relationships and behaviours that go on to influence their response to that experience – and affect attention to it and subsequent response to it.

Over 1000 words and I’ve not even started on emotions and pain!

Take home message: Even if we think we’re not addressing “psychological” stuff – we ARE. Omitting the “what does it mean to you?” and failing to factor that in to our clinical reasoning and subsequent treatment means we’re walking uphill on a scree slope. Oh, and telling someone they’re safe does not change those associations, especially if they’re longstanding. There’s more needed.

 

Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, & Crombez G (2009). A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain, 144 (3), 230-2 PMID: 19376654

Sharp, T. J. (2001). Chronic pain: A reformulation of the cognitive-behavioural model. Behaviour Research and Therapy, 39(7), 787-800. doi:http://dx.doi.org/10.1016/S0005-7967(00)00061-9

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485

Wicksell, R. K., & Vowles, K. E. (2015). The role and function of acceptance and commitment therapy and behavioral flexibility in pain management. Pain Management, 5(5), 319-322. doi:10.2217/pmt.15.32

Advertisements

Do pain management programmes really influence “doing” in daily life?


Disability and coping are two of the most important targets in persistent pain management, along with distress and pain intensity (the latter perhaps being the most difficult to influence). A question, however, is whether existing measures of disability truly capture the activities or occupations that people most value. For example, if house cleaning is just not my thing, even if my functioning improved over the course of a programme, would I choose to spend that new capability on vacuum-cleaning or out there in the garden?!

The Westhaven-Yale Multidimensional Pain Inventory (MPI)(Kerns, Turk & Rudy, 1985)  is a true workhorse of pain management measurement: It’s a measure that provides, via the subscales, an estimate of the complex inter-relationships involved in pain-related disability and distress. Three profiles of coping approach have been derived from the MPI indicating “Adaptive Coping” – the person is likely to continue to improve and engage in living well if they carry on as they are; “Interpersonally Distressed” – the person is experiencing difficulties with relationships and is feeling unsupported by others around them; and “Dysfunctional” – the person is struggling with their pain, and both disability and distress can feel overwhelming.

But the disability components of the MPI don’t really indicate the kinds of activities that people might be passionate about – or those that are relevant to their lives. The items are about general activities people “typically” do – in a North American setting. I know they’ve been validated in many different populations but they still represent a general idea of activity and function rather than the unique and idiosyncratic occupations that people do. (What's the difference? An occupation is the unique way I perform the important tasks of my day - the way I dash around the house while simultaneously cleaning my teeth, getting the dogs outside, making sure the curtains are opened and the appliances off just before I head out the door! We could call this "getting ready for work" but the way I do it, and the way you do it is probably very different!)

Why is that important? Well, because people value different occupations differently, and because values drive motivation, a broad measure of disability may not capture the true value of a pain management programme. And this is why the Canadian Occupational Performance Measure (COPM) (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990) is often used by occupational therapists to establish exactly what it is a person wants to be able to do. Goal Attainment Scaling is another option.

The study

In this study by Persson, Eklund, Lexell & Rivano-Fischer (2017), the aims were to assess longterm changes in MPI profiles over the course of a year; to look at associations between “Adaptive Coper” profiles at follow-up and improvements in occupational performance; and to look at factors at baseline that might be used to predict changes over time. Participants were, as usual, attending a tertiary pain management centre at a University hospital. They took part in a 21 day programme (oh the luxury of time!), and were seen by a team working together (oh the luxury of a co-located team!) including a psychologist, physician, physiotherapist, occupational therapist and social worker (oh for interprofessional teamwork!). The measures taken at pre and post were the MPI, COPM, and background demographic details.

Now here’s where the analysis gets pretty technical: dropout rates and pre-treatment differences amongst the MPI profiles were analysed using Matt-Whitney U, Kruskal-Wallis, chi-squared and independent t-test. Cross-tabs were used to describe the distribution of the MPI profiles. McNemar’s test was used to assess changes over time on each of the four profiles, and ultimately the participants were grouped into four profiles: never AC (Adaptive coper); losing AC; gaining AC, and stable AC, and these groupings were used to analyse associations between changes in MPI profile and changes on COPM from baseline to follow-up. And this, folks, is why occupational therapists NEED to learn statistical analyses! Because they went on to use univariate and multivariate logistic regressions to see whether demographic factors would predict these profiles at follow-up, incorporating satisfaction and performance scores on COPM.

What did they find?

More participants started the programme with a profile of dsyfunctional or interpersonally distressed than adaptive coper – and at both discharge and follow-up the adaptive coping group increased to be the largest subgroup. 20% of the participants ended up in the “gaining AC” group, 11% the “stable AC” group, 6% formed the “losing AC” group, and 63% were never in the adaptive coping group at all. Not so terrific in terms of broad outcome measures, but pretty consistent with other programmes around the world.

On the more individualised outcome measure of the COPM, people in the never AC group showed least clinically relevant improvement, both the stable AC and gaining AC groups showed more improvement on occupational performance and satisfaction with performance than the never AC group, while the stable AC group improved more than the losing AC group in terms of occupational performance changes.

Long-term changes showed those who started as AC were more likely to stay that way over time, and baseline scores for occupational performance were significantly associated with being AC at follow-up – in other words, people who felt OK about what they could do in terms of occupation, tended to become more capable and less disabled over time as measured by the MPI. More importantly, those people who had higher baseline scores on occupational satisfaction were 1.3 times more likely to shift to the AC group over time. “Clinically relevant improvements on performance and satisfaction with performance at 1-year follow-up, in occupations prioritized by the participants, were associated with having an AC profile at follow-up.” (p. 6).

Confidence in doing important occupations breeds confidence in other parts of living with persistent pain.

What does this all mean anyway?

Well, importantly, people who shifted from one of the other profiles to adaptive coping over a year showed clinically relevant improvements in occupational performance and satisfaction with performance – the authors suggest these findings show improvements on and satisfaction with “doing and performing” important occupations. Not being classified into adaptive coping at any time was associated with least improvement in occupational performance and satisfaction. There is an association between “doing/performing” and “coping/adapting” that hasn’t really been studied. Perhaps starting with things people enjoy instead of beating them over the head with things they’ve never been interested in could improve pain management outcomes. Pain management programmes DO influence doing in real life – if real life doing is used as therapy!

The authors also point out that “30–47% of participants who did not show an AC profile at follow-up still showed clinically relevant improvements on occupational performance and on
satisfaction with occupational performance.” (p. 8) This suggests that the MPI coping profiles only represent one part of the outcomes that are important to individuals: occupation being the individualised daily doings that people value very highly, and pointing to the need to explore individualised outcome measurement in more studies. Given that patient-centred pain management is based on individual goals, using only generic measures is likely to give misleading outcomes about treatment efficacy.

 

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

Persson, E., Eklund, M., Lexell, J., & Rivano-Fischer, M. (2017). Psychosocial coping profiles after pain rehabilitation: Associations with occupational performance and patient characteristics. Disability and Rehabilitation: An International, Multidisciplinary Journal, 39(3), 251-260.

Using more than exercise for pain management


In the excitement and enthusiasm for exercise as a treatment for persistent pain, I wonder sometimes whether we’ve forgotten that “doing exercise” is a reasonably modern phenomenon. In fact, it’s something we’ve really only adopted since our lifestyle has moved from a fairly physically demanding one, to one more sedentary (Park, 1994). I also wonder if we’ve forgotten that exercise is intended to promote health – so we can do the things we really want or need to do. Remembering, of course, that some people find exercise actually exacerbates their pain (Lima, Abner & Sluka, 2017), and that many folks experience pain as an integral part of their exercise (think boxing, marathon running, even going to a gym – think of the pain of seeing That Much Lycra & Sweat).

While it’s become “exercise as medicine” in modern parlance (Pedersen & Saltin, 2015; Sallis, 2009; Sperling, Sadnesara, Kim & White, 2017), I wonder what would happen if we unpacked “exercise” and investigated what it is about exercise that makes it effective by comparison with, say, activities/occupations that incorporate whole body movement?

One of the factors that’s often omitted when investigating coping strategies or treatments, especially lifestyle/self management ones, is the context and meaning people give to the activity. Context is about the when, where and how, while meaning is the why. Whether the positives (meaning, and values people place on it) outweigh the negatives (let’s face it, the lycra and sweat and huffing and puffing does not inherently appeal) are factors that enhance (or not) adherence to exercise and activity. One positive is a sense of flow, or “an optimal subjective psychological state in which people are so involved in the activity that nothing else seems to matter; the experience itself is so enjoyable that people will do it even at great cost, for the sheer sake of doing it”(Csikzentmihalyi, 1990, p. 4). I can think of a few things I lose myself in – reading a good book; fishing; paddling across a lake; photography; silversmithing; gardening…

Robinson, Kennedy & Harmon (2012) examined the experiences of flow and the relationship between flow and pain intensity in a group of people living with persistent pain. Their aim was to establish whether flow was an “optimal” experience of people with chronic pain. Now the methodology they used was particularly interesting (because I am a nerd and because this is one technique for understanding daily lived experiences and the relationships between variables over time). They used electronic momentary assessment (also known as ecological momentary assessment) where participants were randomly signaled seven times a day for one week to respond to a question about flow. Computationally challenging (because 1447 measurement moments were taken – that’s a lot of data!), although not using linear hierarchical modeling (sigh), they analysed one-way between group analyses of variance (ANOVA) to explore differences in pain, concentration, self-esteem, motivation, positive affect and potency across four named states “flow, apathy, relaxation and anxiety”. We could argue about both the pre-determined states, and the analysis, but let’s begin by looking at their findings.

What did they find?

People in this study were 30 individuals with persistent pain attending a chronic pain clinic. Their ages ranged from 21 – 77 years, but mean age was 51, and there were 20 women and 10 men (remember that proportion). People had a range of pain problems, and their pain had been present for on average 68 months.

The contexts (environments) in which people were monitored were at home, or “elsewhere”, and, unsurprisingly, 71% were at home when they were asked to respond. Activities were divided into self-care, work and leisure (slightly less time in work than in leisure or self care respectively).  The purpose of the activities were necessity (35%), desire (40%), or “nothing else to do” (18%). And most people were doing these things with either alone or with family, with very small percentages with friends, colleagues or the general public.

Now we’d expect that people doing things they feel so wrapped up in that nothing else matters should experience lower pain – but no, although this was hypothesised, pain intensity scores during flow trended lower – but didn’t actually reach significance. When we add the findings that concentration, self-esteem, motivation, and potency mean scores were highest in the flow state and mean scores were lowest in the apathy and anxiety states, we can begin to wonder whether engaging in absorbing activities has a major effect on pain intensity – or whether the value placed on doing the activities is actually the most important feature for people with pain. Interestingly, people felt their flow experiences while outside the home: this happened rather less often than being in the home, where apathy was most present. So… doing something absorbing is more likely to occur away from home, while remaining at home is associated with more apathy and perhaps boredom. Finally, flow occurred in work settings more than elsewhere, suggesting yet again that work is a really important feature in the lives of all people, including people living with pain. Of course that depends on the kind of work people are doing…and the authors of this paper indicate that people with persistent pain in this study have few places in which they can do highly engaging activities, even including work.

What does this mean for exercise prescription?

Engaging people in something that holds little meaning, has little challenge and may not be in the slightest bit enjoyable is probably the best way to lose friends and have clients who are “noncompliant”. I think this study suggests that activities that provide challenge, stimulation, movement possibilities, the opportunity to demonstrate and develop skill – and that people find intrinsically lead to flow – might be another way to embrace the “movement is medicine” mantra. I wonder what would happen if we abolished “exercises” and thought about “movement opportunities”, and especially movement opportunities in which people living with pain might experience flow? I, for one, would love to see occupational therapists begin to examine flow experiences for people living with pain and embraced the creativity these experiences offer for the profession.

 

 

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Collins.

Lima, L. V., Abner, T. S., & Sluka, K. A. (2017). Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. The Journal of physiology, 595(13), 4141-4150.

Park, R. (1994). A Decade of the Body: Researching and Writing About The History of Health, Fitness, Exercise and Sport, 1983-1993. Journal of Sport History, 21(1), 59-82. Retrieved from http://www.jstor.org/stable/43610596

Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports, 25(S3), 1-72.

Robinson, K., Kennedy, N., & Harmon, D. (2012). The flow experiences of people with chronic pain. OTJR: Occupation, Participation and Health, 32(3), 104-112.

Sallis, R. E. (2009). Exercise is medicine and physicians need to prescribe it!. British journal of sports medicine, 43(1), 3-4.

Sperling, L. S., Sandesara, P. B., Kim, J. H., & White, P. D. (2017). Exercise Is Medicine. JACC: Cardiovascular Imaging, 10(12).

One-session instruction in pacing doesn’t work


If there’s one form of coping strategy that occupational therapists love, it has to be the idea of “pacing”. Of course, the concept of pacing is vexed: we don’t have a good definition that’s widely accepted so it’s difficult to know whether we’re doin’ it right, but the idea of chunking down the amount of activity carried out at any one time is widely used as one way for people to sustain activity involvement despite pain and fatigue.

Today I’m looking at an old paper (from 2016) where people with osteoarthritis (hip or knee) were given instruction in time-based activity pacing by an occupational therapist. Surprisingly, this was a three-arm randomised controlled study, where 193 people were randomised into tailored activity pacing, general activity pacing, or usual care. I say surprisingly because RCT’s are fairly rare in occupational therapy research in persistent pain, and nigh on impossible to get funding for (sigh).

The definition of pacing used in this study was “the regulation of activity level and/or rate in the service of an adaptive goal or goals” (Nielson, Jensen, Karsdorp & Vlaeyen, 2013) although the form of pacing offered by clinicians working in this field is still unclear. In this study, the “tailored” group underwent seven days of monitoring using an accelerometer, the results were downloaded, analysed and an individualised pacing plan developed by the therapists. The plan was intended to highlight times when the person had high or low levels of activity (as compared with their own average, and averages drawn from previous studies of people with the same diagnosis), and to point out associations between these activity levels and self reported symptoms. Participants were then provided with ideas for changing their activity levels to optimise their ability to sustain activity and minimise symptom fluctuation.

In the “general” pacing group, participants were given the same sorts of instructions, but instead of using objective data from their own activities, they were asked to recall their past situations and symptoms, and broad guidelines were given instead. Both groups had three sessions with comparable educational material.

In the usual care group, participants were instructed to carry on with their usual approach to activity, and were assessed at baseline, 10 weeks and six months, using the same assessment process as those in the experimental arms.

Outcome measures were fatigue, measured by the Brief Fatigue Inventory (Mendoza, Wang, Cleeland, Morrissey, Johnson, Wendt & Huber, 1999); and the 8-item PROMIS fatigue short form. Pain severity was measured using the pain subscale drawn from the WOMAC. Additional measures included the 6-minute walk test; the WOMAC physical disability short form scale; the Arthritis Self-Efficacy Scale; the CES-D depression measure, and various demographic and disease measures (joint space narrowing, osteophyte formation etc). Finally, to determine activity pacing adherence, the pacing subscale of the Chronic Pain Coping Inventory was used (Jensen, Turner, Romano & Strom, 1995).

What did they find?

Well, you may have guessed from the title of this post: although people given the pacing intervention said they benefited, and they changed the way they carried out daily activities, the results showed that although they did so, the only significant change on measures taken was for WOMAC pain, in which the people in the general pacing group reduced their pain over the first 10 weeks. BUT participants in the usual care group reduced their pain over six months!

What does this mean?

Should we all throw out the idea of paced activities? Should occupational therapists despair and go back to the drawing board?

I don’t think so, and here’s why.

I think targeting pain intensity is possibly the wrong outcome in a study like this. We already have a vast collection of studies showing that pain intensity and disability are not well-correlated. Pain intensity alone isn’t the main reason people stop doing things when they have osteoarthritis – it’s often fear that the pain signifies “bone on bone” and “wear and tear” and “cartilage disintegration” (Hendry, Williams, Markland, Wilkinson & Maddison, 2006). And we also know that people with osteoarthritis develop their own self-management strategies and that these focus on maintaining everyday social roles and valued activities (Morden, Jinks, Bie Nio, 2011). Values seem to help people engage in demanding activities, whether the demands are because the activities hurt, or they’re physically demanding, or they’re not our favourite thing to do (think vacuum cleaning when Mum is coming to visit!) (McCracken & Keogh, 2009).

Perhaps, by drawing attention to both activities and pain intensity, the therapists in this study created a situation where pain intensity became more salient to the participants. Perhaps, too, aiming to reduce pain doesn’t take into account the other values people may hold. For example, even if I’m sore I’ll rush around cleaning if I know my parents (or other visitors) are coming to visit. My pain intensity matters less than feeling embarrassed at an untidy house.

I think we need to revisit the aims of pacing activity. To me there are several reasons for having the strategy available when/if needed:

  1. If I want to work consistently at something that’s going to take a week or two to do. Example: I recently laid bricks under my cherry tree. I did this over three weekends because digging into really hard soil, heaving bags of sand, and placing the bricks is something that increases my pain quite a lot. Because I have other things to achieve over the weekend and during the week, and laying the bricks wasn’t a top priority, I chose to do about a metre square each day of each weekend.
  2. If I’m aiming to do something quite demanding – like go on a two-day tramp (hike). I’ll try to build my activity tolerance over similar terrain with similar loads in advance of the actual trip.
  3. If I really loathe the job and would otherwise avoid it… For example, vacuuming and mopping my floors. I’ll do a room at a time because I seriously do not enjoy housework!

Looking at activity management in isolation from what a person believes is important makes this strategy pretty unpalatable. Combine it with values, and we’re starting to see something that can be employed flexibly and when it’s workable.

 

Hendry, M., Williams, N. H., Markland, D., Wilkinson, C., & Maddison, P. (2006). Why should we exercise when our knees hurt? A qualitative study of primary care patients with osteoarthritis of the knee. Family Practice, 23(5), 558-567.

Jensen MP, Turner JA, Romano JM, Strom SE. (1995). The Chronic Pain Coping Inventory: development and preliminary validation. PAIN ;60, 203–16.

McCracken, L. M., & Keogh, E. (2009). Acceptance, mindfulness, and values-based action may counteract fear and avoidance of emotions in chronic pain: An analysis of anxiety sensitivity. The Journal of Pain, 10(4), 408-415. doi:http://dx.doi.org/10.1016/j.jpain.2008.09.015

Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK, Huber SL. (1999). The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer 85, 1186–96.

Murphy, S. L., Kratz, A. L., Kidwell, K., Lyden, A. K., Geisser, M. E., & Williams, D. A. (2016). Brief time-based activity pacing instruction as a singular behavioral intervention was not effective in participants with symptomatic osteoarthritis. Pain, 157(7), 1563-1573.

Morden, A., Jinks, C., & Bie Nio, O. (2011). Lay models of self-management: How do people manage knee osteoarthritis in context? Chronic Illness, 7(3), 185-200.

Nielson WR, Jensen MP, Karsdorp PA, Vlaeyen JW. (2013). Activity pacing in chronic pain: concepts, evidence, and future directions. Clinical Journal of Pain, 29, 461–8.

Persson, D., Andersson, I., & Eklund, M. (2011). Defying aches and revaluating daily doing: Occupational perspectives on adjusting to chronic pain. Scandinavian Journal of Occupational Therapy, 18(3), 188-197. doi:http://dx.doi.org/10.3109/11038128.2010.509810

One way of using a biopsychosocial framework in pain management – vi


I could write about a BPS (biopsychosocial) model in every single post, but it’s time for me to explore other things happening in the pain management world, so this is my last post in this series for a while. But it’s a doozy! And thanks to Eric Bowman for sharing an incredibly relevant paper just in time for this post…

One of the problems in pain management is that there are so many assessments carried out by the professionals seeing a person – but very little discussed about pulling this information together to create an overall picture of the person we’re seeing. And it’s this aspect I want to look at today.

My view is that a BPS approach provides us with an orientation towards the multiple factors involved in why this person is presenting in this way at this time (and what is maintaining their presentation), and by integrating the factors involved, we’re able to establish a way to reduce both distress and disability. A BPS approach is like a large-scale framework, and then, based on scientific studies that postulate mechanisms thought to be involved, a clinician or team can generate some useful hypotheses through abductive reasoning, begin testing these – and then arrive at a plausible set of explanations for the person’s situation. By doing so, multiple different options for treatment can be integrated so the person can begin to find their way out of the complex mess that pain and disability can bring.

The “mechanisms” involved range from the biological (yes, all that cellular, genetic, biomechanical, muscle/nerve/brain research that some people think is omitted from a BPS approach IS included!), to the psychological (all the attention, emotion, behavioural, cognitive material that has possibly become the hallmark of a BPS approach), and eventually, to the social (interactions with family, friends, community, healthcare, people in the workplace, the way legislation is written, insurers, cultural factors and so on). That’s one mess of stuff to evaluate!

We do have a framework already for a BPS approach: the ICF (or International Classification of Functioning, Disability and Health) provides one way of viewing what’s going on, although I can empathise with those who argue that it doesn’t provide a way to integrate these domains. I think that’s OK because, in pain and disability at least, we have research into each one of these domains although the social is still the most under-developed.

Tousignant-Laflamme, Martel, Joshi & Cook (2017) provide an approach to help structure the initial domains to explore – and a way to direct where attention needs to be paid to address both pain and disability.

What I like about this model (and I urge you to read the whole paper, please!) is that it triages the level of complexity and therefore the intervention needed without dividing the problem into “physical” and “psychosocial”. This is important because any contributing factor could be The One to most strongly influence outcome – and often an integrated approach is needed, rather than thinking “oh but the biological needs to be addressed separately”.

Another feature I like about this model is the attention paid to both pain and disability.

Beginning from the centre, each of the items in the area “A” is something that is either pretty common, and/or easily modified. So, for example, someone with low back pain that’s eased by flexion, maybe has some osteoarthritis, is feeling a bit demoralised and worries the pain is going to continue, has a job that’s not readily modified (and they’re not keen on returning) might need a physiotherapist to help work through movement patterns, some good information about pain to allay their worries, an occupational therapist to help with returning to work and sleeping, and maybe some medication if it helps.

If that same person has progressed to become quite slow to move and deconditioned, they’re experiencing allodynia and hyperalgesia, they have a history of migraine and irritable bowel, their sleep is pretty rotten, and they’re avoiding movements that “might” hurt – and their employer is pretty unhappy about them returning to work – then they may need a much more assertive approach, perhaps an intensive pain management programme, a review by a psychiatrist or psychologist, and probably some occupational therapy intervention at work plus a graded exposure to activities so they gain confidence despite pain persisting. Maybe they need medications to quieten the nervous system, perhaps some help with family relationships, and definitely the whole team must be on board with the same model of healthcare.

Some aspects are, I think, missing from this model. I’d like to see more attention paid to family and friends, social and leisure activities, and the person’s own values – because we know that values can be used to help a person be more willing to engage in things that are challenging. And I think the model is entirely deficits-based meaning the strengths a person brings to his or her situation aren’t incorporated.  Of course, too, this model hasn’t been tested in practice – and there are lots of gaps in terms of the measures that can be used to assess each of these domains. But as a heuristic or a template, this model seems to be practical, relatively simple to understand – and might stop us continuing to sub-type back pain on the basis of either psychosocial risk factors or not.

Clinicians pondering this model might now be wondering how to assess each of these domains – the paper provides some useful ideas, and if the framework gains traction, I think many others will add their tuppence-worth to it. I’m curious now to see how people who experience low back pain might view an assessment and management plan based on this: would it be acceptable? Does it help explain some of the difficulties people face? Would it be useful to people living with pain so they can explore the factors that are getting in the way of recovery?

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485

One way of using a biopsychosocial framework in pain management – v


Theories are an important part of scientific development. Theories are essentially a collection of propositions or hypotheses that build a picture of what is in order to predict or control or somehow explain what’s going on. The extent to which a theory’s predictions represent what actually happens, given a set of circumstances, allows us to place more or less faith in the adequacy (or perhaps accuracy) of that theory. The problem with social theory is that there are so many complex interactions between variables that it’s very hard to generate hypotheses that represent what actually goes on in the world – so we end up with skinny theory that explains very little, and in turn this allows naysayers to argue “oh but it isn’t so”.

A biopsychosocial framework is one of those messy, complex theoretical models of “the way people are” that beg for people to argue against it. “It’s too complex”, “it’s too broad”, “it’s too reductionist”, “it’s not clinically useful” – all points against this way of viewing people. Yet, after years of using this model, I still find myself unable to find an alternative way of attempting to understand my two clinical questions: why is this person presenting in this way at this time (and what is maintaining their situation), and what can be done to reduce distress and disability?

Social theories are not something many health professionals are introduced to during their undergraduate training. We’re not trained to understand topics like structure of societies, organisations, groups and everyday lives and how they come about. We don’t typically get trained to think about power and who defines what is normal and abnormal, or who generates names for things – classifications, taxonomies, diagnoses. We rarely get to unpack the hidden discourse of who holds power in healthcare delivery, policy development – even social spending on health.

The people I typically see, living with persistent pain, are often from what posh folks call “the wrong side of the tracks”. Many people don’t have good employment histories. They may not have savings, they may live off a benefit. They are often not well-educated, having left school to do manual work. Their daily routines might be chaotic, and the idea of “keeping fit” or “eating well” doesn’t occur to them because their lives are about getting through the day, loving the family they have, and maybe looking towards a tomorrow where things might be different.

In pain management, we’ve not really spent much time examining the kinds of social relationships or social structures in which the people who really struggle with managing pain come from.  I’m not sure I’ve read very much research exploring, for example, whether people who have two jobs and live on a minimum wage experience greater difficulty developing skills in pacing their activities. I’ve not heard much from the people who live in this way expressing their understanding of what contributes to their distress and disability. I don’t see much about how uncertainty of employment pushes people into unsuitable work – while work is good for most people, what about those minimum wage jobs with unsavoury work environments, precarious employment tenure, cold, wet, smelly and physically demanding jobs with little prospect for the future? I don’t see very much about the effect of someone living on the bare bones of their threadbare trews going to see a medical specialist dressed immaculately in a bespoke suit and silk tie, with the handmade shoes and a language of healthcare that is incomprehensible to anyone other than another similarly clad specialist.

For a sociopsychobiological model of pain (yes, that’s a word, and no I haven’t got it backwards – see this) to gain traction, I think it’s timely to ponder the way our communities view persistent pain. Communities include our own healthcare communities – the manual therapy, physical therapy, occupational therapy, nursing, medical enclaves that use special language and dress in certain ways to demonstrate that we know our stuff. And we need to take a minute to understand the communities the people we hope to help come from.

At the stroke of a keyboard, the labels we give to someone – fibromyalgia, “degenerative changes”, “pre-existing condition”, “depression” – alter the treatment that person receives within healthcare. No question about it – if a person is receiving accident compensation (in NZ it’s ACC) and someone gives that kind of label to them, they’re going to the bottom of the health queue. The vagaries of our system mean that person doesn’t receive work-related rehab, they’re disentitled from ACC, no more weekly compensation, and oh yes they now go through the dehumanising process of attending the “Ministry for Social Development”.

I’m not arguing against the way our ACC legislation is written. And I’m not certain that receiving compensation is always a good thing. What I am pointing out is that when health professionals view the person in front of them as “other” – beneficiary, ACC claimant, pain patient – we are issuing a social declaration. And that means we’re exerting a degree of power over them and their lives. The labels we give have power. And this has a significant impact on the way that person views their pain, and the treatment they may receive.

I think until we begin to include, extend, and invite people living with pain to co-investigate their experience and to contribute to our health professional education (including scientific meetings), we’ll carry on thinking of ourselves as somehow superior to, and certainly more powerful than, the people we hope to treat. Hats off to Rajam Roose for developing the San Diego Pain Summit where this year she’s included a patient panel to give an insight into what it means to hear “your pain is just an output of your brain”. Can we have more please.

What can we do to reduce distress and disability? One thing we can do is begin a conversation about persistent pain being something that anyone can experience. It’s just that people without resources end up dealing with not only pain but also lack of power to change the way it’s treated.

One way of using a biopsychosocial framework in pain management – iv


And yes! There’s more to this series of posts on how I use a biopsychosocial model in practice!

Today’s post is about moving from a conceptual model to a practical model, or how we can use research in our clinical reasoning.

A biopsychosocial model (BPSM) as envisaged by Engel was a framework for clinicians to think about why this person is presenting in this way at this time (and what may be maintaining their situation), as well as what could be done to reduce distress and disability. Engel wanted clinicians to go beyond disease processes, isolated from the people experiencing them, and to explore aspects of how the person coped with everyday challenges (including health), the factors that influenced their decision that their health problem was indeed a problem, and the context of seeking healthcare.  He wanted clinicians to be scientific about how they generated hypotheses which could then be tested in clinical practice, and ultimately confirm or disconfirm the contribution of that factor.

The “bio” aspect of pain (which is a contentious word – I’ll comment in a bit) involves disease processes, trauma, all the biological aspects prior to conscious awareness of the “ouch” we know as pain. Theoretical developments in this area include all the work being conducted in terms of understanding anatomy and physiology of the human body, from molecular study (information transmission from one neurone to another); detailed understanding of spinal cord mechanisms; of the role of glia; of inflammatory processes; of genetic and epigenetic changes; of relationships between blood flow to and from various parts of the brain; of biomechanics; of normal healing processes – and so on. There’s no lack of information being generated by researchers undertaking basic science about the biological mechanisms involved in our experience of pain. Because I typically see people with persistent pain that has been present for maybe 12 months or more (usually much longer than that), I rely on the work of my colleagues to make a good diagnosis. Most people have had more investigation than is probably helpful for them, and I think we can use Clifford Woolf’s broad mechanisms as a reasonable stance when considering an underlying mechanism involved in a person’s pain. Essentially he identifies four main mechanisms: nociceptive, inflammatory, neuropathic and what is now known as “nociplastic” (where the nociceptive system appears to have a problem with processing information).

Yes, we can argue that our current state of understanding is incomplete and there is more to learn, but by working from these basic mechanisms I think we can begin to work on the “bio” part of a biopsychosocial model with a degree of confidence. For my work, anyway, these mechanisms seem to provide a reasonable framework from which the “bio” part of management can begin.

But this is where many clinicians start – and stop. Directly treating, for example, inflammation, certainly provides a reduction in pain – for example, my partner who takes Humera for his ankylosing spondylitis. He no longer experiences inflammatory pain and as his CRP levels reduced, so too did his pain. We can see similar effects when someone has a grotty old hip joint replaced, which removes nociceptive input, ultimately leaving them with a shiny new and painfree hip (in most cases). But as my partner found out, having no pain doesn’t immediately change old habits.

His situation is a nice illustration of the interaction between a disease process which responded really well to a drug that eliminates inflammation, and his beliefs and behaviour which wasn’t changed. Let me explain – once his drug kicked in and he had no pain, he found it odd not to have to think about his pain when climbing hills. It took him about a month or two to fully return to hill climbing in the way he’d done before his anky spond started. That’s right – no pain for a month or two, but that long before he felt confident to go about his activities. And he’s not a man who worries much about his pain!

To add some theory to this, his beliefs (that if he climbed hills a full speed he would inevitably end up with a very sore back) led to him having learned not to go a full pace (through both classical and operant conditioning). We could call this “pain-related fear and avoidance” – or “fear avoidance”. This is one theory that has been extensively researched, and we can integrate the hypotheses generated from this theory into our understanding of why my partner initially had some hesitation about climbing hills. Flowing on from this, we can consider treatments that have been found useful to address his hesitation.

The first treatment could be “explaining pain” to him. Now that wasn’t useful in this case because – oh yeah – his pain had gone! And although he knew his inflammatory pain wasn’t going to harm him (otherwise he’d never have been a high country fire fighter for 20 years despite his anky spond!), he didn’t like the after-effects of aggravating his pain. What helped was addressing his anxiety about the potential for a big flare-up – and this was primarily about beginning at a level that was just beyond his “normal” hill climb, and gradually progressing.

This superficially looks like “exercise” – but it’s exercise with a twist. My partner is as fit as a buck rat. His cardiovascular fitness was fine. Gradually increasing his hill walking wasn’t about increasing fitness – it was about helping him approach an activity that he was a tad concerned might flare his pain up, leading to a rotten night’s sleep (as it had in the past). In fact, this “treatment” was almost all about reducing avoidance by exposing him to things that increased his anxiety just a bit – enough for him to establish that the rotten sleep consequence didn’t happen.

So a biopsychosocial approach to his recovery involved the biological which quickly resolved his pain but left him with some concerns (reasonable ones I think) about pushing himself too hard. Addressing those concerns by taking a theory developed originally from phobia research, applying it to his situation and developing a treatment based on this theory, has led to his return to full participation. Using research-based information to address another part of “why is this person presenting in this way at this time, and what might be maintaining this situation” involves thinking beyond the disease process, and into understanding the problems the person identifies. It means thinking beyond a single discipline. It means reading widely and thinking creatively. That was a good part of Engel’s original proposition.

 

One way of using a biopsychosocial framework in pain management – iii


Before Christmas and the New Year break I was writing about how I use a biopsychosocial model in pain management – and I haven’t finished!

To review: The first post was about the context or the ideas behind Engel’s original model, and my two key clinical questions – why is this person presenting in this way at this time, and what can be done to reduce distress and disability?

The second post was about classical and operant conditioning and why these models are useful when we’re thinking about what a person does when they’re sore – and how their actions communicate to people around them. I also pointed out that many of these actions are not conscious, but have been learned and shaped from childhood, leading to a myriad of ways people express themselves when they’re in pain.

One of the criticisms of this approach to pain management is that “the model” isn’t scientific (therefore doesn’t lend itself to generating hypotheses that can be tested), and a second is that it’s “too fuzzy” and doesn’t specify what should be “in” and what should be “out” in clinical reasoning. I don’t agree with either of these statements and today I hope to present why.

Is a BPSM truly a “model”? What’s a model anyway? – one definition I’ve found is “In science, a model is a representation of an idea, an object or even a process or a system that is used to describe and explain phenomena that cannot be experienced directly.” In other words, they’re like a metaphor, bridging between something known and something abstract or unfamiliar. Models may be extremely detailed and mathematical, but may also be conceptual and broad. BPSM is probably the latter – a conceptual model from which we’ve developed some useful and testable hypotheses.

Engel himself described this as a scientific model, saying that it “enables the physician to extend application of the scientific method to aspects of everyday practice and patient care heretofore not deemed accessible to a scientific approach” (Engel, 1980, p.  535). He goes on to say that the doctor’s tasks are to find out what and how the patient is feeling, then to explanations (hypotheses) for the patient’s feelings and experiences, and then to test those hypotheses via clinical and laboratory studies (p. 536). Engel had some ideas about how a physician might generate hypotheses – based on his knowledge of general systems theory (von Bertalanffy, 1968). Engel appealed to von Bertalanffy’s idea that systems are a hierarchically arranged series of units, with the level of analysis dependent upon the complexity and unit of measure. In other words, molecular analysis is appropriate when cells and physiology are the unit of analysis, while the quality and influence of social connections are appropriate when looking at the influence of community and legislation on an individual’s behaviour.

The notion that a BPSM approach is “too fuzzy” and doesn’t provide structure is quite true: there’s not a lot of explanation as to how the various levels within a hierarchical system might interact. Interestingly, I think this problem is still relevant today!  While we know a lot about the brain, and a little about the mind – we don’t know how brain produces “mind”, although some philosophers and neuroscientists have taken a stab at it (thinking Andy Clark amongst others here). Similarly, although we know a lot about thoughts, beliefs and even relationships, we don’t know nearly as much about how thoughts and beliefs are adopted by a community, although Daniel Dennett has some thoughts about this.

So, it’s hardly surprising that when it comes to pain, we struggle to understand how biological processes, psychological processes and social ones interact to produce the experience of one person presenting for treatment at this time in this way – but this does not mean we should ignore what we DO know, which is that within each domain there is much to explore!

My preference is to draw on Brian Haig‘s idea of an Abductive Theory of Scientific Method, and in particular this paper on clinical reasoning, scientific method and abductive reasoning. The basic idea is that we recognise the existence of a phenomenon because either we’ve seen it before, or we’ve read about it. We distinguish between random events and a phenomenon because these appear to be consistent and repeated. Then we begin to generate some hypotheses to explain the presence of this phenomenon. Abduction is the process of studying what we see/observe/know (“facts”) and developing a theory to explain them (or generating a hypothesis). We then go about testing that hypothesis – and while we never truly confirm it, we can reject an alternative hypothesis tested against the first. As a result we arrive at what we can call a plausible explanation – something that “makes sense”, given what we’ve observed, and what we know about the world and how it works.

More about this geeky stuff next week. Meanwhile I think it’s worth pondering this: in “usual science” we somehow arrive at a hypothesis, and then set about testing it. No-one, it seems, knows where the original hypothesis comes from – and it’s rarely truly acknowledged. Researchers typically look for “gaps in the literature”, something that hasn’t been asked or answered yet, but what if you happen to be a clinician? I think clinicians routinely observe “interesting things” that, if we took some time to measure them, might be a phenomenon. Something that hasn’t yet been explained. I also think we have opportunities to be scientific about how we investigate what we see and do, if we’re prepared to be systematic and think about how we might control for confounds/bias. And I think those edges between levels within a hierarchy or between domains might be fruitful areas for clinicians to be exploring – bringing us to a practical application of Engel’s BPSM.

ENGEL, G. L. 1980. The clinical application of the biopsychosocial model. The American Journal of Psychiatry, 137, 535-544.

HAIG, B. D. 2008. Scientific method, abduction, and clinical reasoning. Journal of Clinical Psychology, 64, 1013-1018.

One way of using a biopsychosocial framework in pain management – ii


Last week I discussed case formulation as one way of using a biopsychosocial framework in pain management, and I reviewed Benedetti’s description of the process of becoming aware that something’s wrong, seeking relief from that discomfort, then the “meet the therapist moment”, and finally the “receiving the therapy” steps along the way. Benedetti considers this within a neurobiological model (Benedetti, 2013), while Engel (1977) used general systems theory to frame his critique of the original biomedical model.

This week I want to look at a behavioural model. I do this partly because I think it’s been a long time since this model was brought into our discussions about pain and pain behaviour, and I do it because I think we can understand a great deal about why different people respond differently to their pain when we look at behaviour alone – before we even begin to look at beliefs or attitudes about pain.

Let’s do a little revision (Psych 101). In a behavioural model, we’re looking at two main forms of conditioning: Pavlovian or classical conditioning, and operant or instrumental conditioning. In the case of pain, we also need to revisit the distinction made between the experience (pain), and our behavioural response to that experience (pain behaviours). Pain behaviours are typically filtered or influenced by what we think is going on (judgements about the meaning of pain – eg super-scary crumbling back, or I just did too much gardening), what we’ve learned to do, and the context in which we’re experiencing pain. That context can be current (eg I’m in Church and it’s very quiet so I’d better not swear as I hit my toe against the pew!), or past (eg last time I kicked my toe against the pew and swore, everyone looked at me – how embarrassing!), or even future (eg if I swear when I kick my toe against the pew, I’ll never be able to show my face here again!). It’s the learned part I want to discuss today.

Pain behaviours range from reflex withdrawal responses (lifting the foot up while straightening the other leg to support me when I stand on a tack), to quite complex behaviours we’ve learned are relevant in our environment (filling out a claim form for compensation and treatment).

We probably developed pain behaviours as part of our evolutionary development: the reflex withdrawal behaviours don’t require conscious thought, so they begin in infancy (actually, before), and rely on spinal mechanisms (eg Rohrbach, Zeiter, Andersen, Wieling & Spadavecchia, 2014), with various parts of the brain becoming involved as part of strategies to avoid threat (see Damasio and Damasio (2016) for some insights into evolutionary aspects of withdrawal reflex). But because we have a developed cortex, we’ve learned ways of suppressing our responses, depending on social context – and on responses from others around us.

Reflexive responses are those associated with classical conditioning – and lead us to learn relationships between previously non-threatening stimuli and both withdrawal responses and the physiological arousal that goes with them. For example, if I bend over to make the bed and OUCH! my back suddenly gets really sore. I straighten up very carefully – and I’ve learned something: next time I bend over to make the bed, I’ll be remembering and preparing for that OUCH! to happen once again. The bed and bending forward movement become associated, in my mind, with that OUCH! Of course, for most of us, once we make the bed a few more times (make that many times), we’ll learn that OUCH! doesn’t inevitably follow the bend, so we gain confidence to repeat that movement without preparing for the OUCH! Now what do you think might happen if I never had an opportunity to make the bed again? Say, if I have a really protective person in my life who stopped me every time I go to do it – will that association I have in my mind persist, or will it reduce? This is, in essence, what is thought to happen when someone develops so-called “fear avoidance”. Note: the experience of pain does not have to re-occur for me to avoid bending and begin to rev my nervous system up. What needs to happen is for the first instance to be pretty strong, and for me to not test my belief again. It’s the behaviour that persists (avoidance) because by avoiding something I believe will be OUCH! I avoid experiencing OUCH! And by avoiding that experience, I never test whether OUCH! happens every time, or just that once.

Let’s look at the other really powerful learning mechanism: operant conditioning. In this situation, the likelihood of me repeating my behaviour is increased or reduced, depending on responses in the environment. So, let’s take my bending forward and experiencing OUCH! If my partner (bless him) then decided to fuss over me, make me a cup of tea and tell me not to worry about making the bed ever again – AND if I liked that idea – my response is likely to be to avoid making the bed. I might even go as far as wincing a bit when walking, so he makes me another cup of tea and fusses over me. I might talk about my back pain because he’s so concerned about me (or I really want him to be concerned about me) and if he carries on fussing, I’m likely to carry on with these behaviours. Now picture that in a two-year-old kid – every time the kid trips and cries, some concerned parent comes picks him up, something the kid likes, it’s probable that kid will learn that this is normal, and something to do when he hurts. For more on learning theory, Johan Vlaeyen summarises the state of play in a review paper from 2015 (Vlaeyen, 2015).

We’re smart, us humans. We learn to predict and remember patterns even from imprecise data – it doesn’t take much for us to put two and two together, particularly when it’s something relevant to surviving! Whenever I’m listening to someone telling me their story about why they’re presenting in this way at this time, and what is maintaining their situation, I keep thinking about the various learning mechanisms involved. Social context and the people around us and how they respond to us exert a powerful force on what we do – and many times we’re not even aware of why we do what we do.  Knowing this stuff means that when I’m listening to someone’s story I try very hard to factor in those things that may have influenced what the person does, rather than just thinking the person is aware of doing all they are doing.

 

Benedetti, F. (2013). Placebo and the new physiology of the doctor-patient relationship. Physiological Reviews, 93(3), 1207-1246. doi:10.1152/physrev.00043.2012

Damasio, A., & Damasio, H. (2016). Pain and other feelings in humans and animals. Animal Sentience: An Interdisciplinary Journal on Animal Feeling, 1(3), 33.

Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, 196(4286), 129-136.

Rohrbach, H., Zeiter, S., Andersen, O. K., Wieling, R., & Spadavecchia, C. (2014). Quantitative assessment of the nociceptive withdrawal reflex in healthy, non-medicated experimental sheep. Physiology & behavior, 129, 181-185.
Vlaeyen, J. W. (2015). Learning to predict and control harmful events: Chronic pain and conditioning. Pain, 156, S86-S93.

One way of using a biopsychosocial framework in pain management – i


While a biopsychosocial ‘model’ (or sociopsychobiological framework) has been widely adopted when attempting to understand pain, many critics argue that it just doesn’t give clinicians a clear way to integrate or prioritise clinical information and generate treatments. The ‘model’ itself has been challenged from many angles – it’s too complex, too simplistic, relies on Bertalanffy’s “general systems theory” which has itself been challenged, it’s too “fuzzy”, and of course there are many who think that psychological and sociocultural aspects of human experience are epiphenomena while will ultimately be boiled down to cellular or biological processes. Nevertheless, this framework also has considerable appeal, is widely adopted and I think can provide us with some useful heuristics for thinking about how and why a person presents in the way they do at the time they do – and helps us consider what can be done to reduce distress and disability.

Disclaimer: I work with the “fuzzy” sociopsychological aspects of pain management, and leave a great deal of the biological to those who focus on that – and believe me, the biological is usually done and done to the nth degree in most cases of persistent pain. I rarely see someone who hasn’t had their scans, Xrays, physical examinations, bloods, urine, nerve conduction, surgery, exercise or whatever looked at – but plenty of people who have never once been asked what they think is going on and what their main concern is. Oh and not had their sleep, mood, alcohol and other substance use, daily routines, relationships, work situation, community and spiritual aspects of life ever discussed. So, despite the constant banging on about “don’t forget the bio” – I really do not think this is a thing.

Where do we start with this approach?

The first place I start with my discussions is to ask “Tell me about your problems with pain.” What I’m focusing on in this discussion is when did the person first recognise that there was “something wrong” – and then what did they do about it.

Fabricio Benedetti talks about the neurobiological processes involved in a person detecting that he or she is “unwell”. He writes: “Physiology and neuroscience have a lot to say about feeling sick, for it involves sensory systems that convey different pieces of information related to peripheral organs and apparatuses, as well as brain regions that lead to conscious awareness.” (Benedetti, 2013). To me, this involves biological, psychological and social factors for when does a person recognise that “conscious awareness” means something? Benedetti goes on to say “The second step is what makes a patient “seek relief,” a kind of motivated behavior that is aimed at suppressing discomfort. This behavioral repertoire is not different from that aimed at suppressing hunger or thirst, and the brain reward mechanisms are crucial in this regard” (Benedetti, 2013). Judgements about what internal experiences mean may begin with a reflex response (automatic and based on evolutionary demands to keep safe) but what we DO about those experiences depends a great deal on what we learn from others. The people we most draw from are those around us – mother, father, siblings, people in our immediate family and extended family. And over time, the social nature of humans means we also consider the community in which we live – and wider with social media! Judgements, or appraisals (thoughts and beliefs about the meaning of these internal experiences) are, ‘fraid to say, psychological in nature. While the influences on thoughts and beliefs are – you guessed it – social.

So, how can a clinician use this information? Where’s the research? Come on – science it up woman!!

If it’s not enough to know that there are neurobiological factors underpinning our internal experience, and motivated behaviour is tied up with reward systems, then what else can we use to understand the processes of feeling ill and seeking treatment? To me, the natural first step is to look at learning mechanisms. Yep, very basic Psych 101 classical and operant conditioning mechanisms. Add in a dash of social learning theory (how we learn from watching and talking with others) and we have some rather useful experimentally-validated hypotheses to work with.

What do I mean by this?

Well, at least part of clinical reasoning is a process of recognising potential explanations for the phenomena we see. My take on clinical reasoning is that we can use case formulation to help generate a series of hypotheses to explain why a person is coming to see us in this way at this time – and what might be maintaining their current situation. In case formulation we can use “abductive reasoning” (recognising a potential “rule” or class of behaviour from a specific observation – eg we can postulate that a person’s sleep disturbance might be due to low mood, sleep apnoea, habit, operant conditioning, or a new baby, and we’ll probably collect some more information to test each of these possible explanations before deciding on the most probable reason). If we know a whole bunch of research around what humans do when they’re feeling sore and vulnerable, we are able to come up with a bunch of possible reasons for someone noticing they feel unwell, judging it in a certain way, and then deciding to do something about it.

For example, we know from research studies that people who have had adverse experiences in early childhood have a greater risk of developing post-traumatic stress disorder and chronic pain (eg Afari, Ahumada, Wright, Lostoufi, Golnari, Reis & Cuneo, 2014; Jones, Power & Macfarlane, 2009). We also know that those people may develop weaker attachments to others and so feel vulnerable in relationships where high levels of trust are needed – also linked to the presence of persistent pain – and adversely affecting outcomes from multidisciplinary pain management programmes (Anno, Shibata, Ninomiya, Iwaki, Kawata, Sawamoto et al., 2015; Kowal, McWilliams, Peloquin, Wilson, Henderson & Fergusson, 2015).

These factors might mean that when we ask someone about their theory for why they have persistent pain, or what they think is going on, we might keep an ear open to listen for threats to relationships around the time of the onset of the problem dealing with pain (especially if the pain has been present for a while but the person hasn’t been looking for treatment until just now). We might also be thinking hard about the neurobiological effects of relationship breakups and how this might impinge on either coping (eg accessing strategies to manage effectively during painful experiences) or on stress responses (eg heightened vigilance to threat).

Two things: (1) This doesn’t mean persistent pain is “psychological” – it’s not, but these experiences might set the scene for neurobiological changes, both in “set-point” for threat and in resilience for dealing with threat. (2) This also doesn’t mean that we need to deal with the response to relationship stress ourselves – it might mean we listen respectfully, and bear this vulnerability in mind during our interactions, being careful not to threaten trust, and work hard to retain a sense of warmth/empathy as well as competence for this person.

Next time: More on learning theory and how these might influence the way we look at why someone seeks treatment with us, and why at this time, and what may be maintaining the behaviours we see.

 

Afari N, Ahumada SM, Wright LJ, Mostoufi S, Golnari G, Reis V, Cuneo JG., (2014). Psychological trauma and functional somatic syndromes: A systematic review and meta-analysis. Psychosomatic Medicine, 76, 2-11.

Anno, K., Shibata, M., Ninomiya, T., Iwaki, R., Kawata, H., Sawamoto, R., . . . Hosoi, M. (2015). Paternal and maternal bonding styles in childhood are associated with the prevalence of chronic pain in a general adult population: The hisayama study. BMC Psychiatry, 15(1), 181. doi:10.1186/s12888-015-0574-y

Benedetti, F. (2013). Placebo and the new physiology of the doctor-patient relationship. Physiological Reviews, 93(3), 1207-1246. doi:10.1152/physrev.00043.2012

Jones GT, Power C, Macfarlane GJ, (2009). Adverse events in childhood and chronic widespread pain in adult life: Results from the 1958 British Birth Cohort Study. Pain 143:92-96.

Kowal, J., McWilliams, L. A., Péloquin, K., Wilson, K. G., Henderson, P. R., & Fergusson, D. A. (2015). Attachment insecurity predicts responses to an interdisciplinary chronic pain rehabilitation program. Journal of Behavioral Medicine, 38(3), 518-526. doi:10.1007/s10865-015-9623-8