Clinical reasoning

Assessing problems with sleep & persistent pain


Problems with sleep affect most of us from time to time. We know we might find it difficult to get off to sleep because of a busy mind, a different bedroom, changes to our schedule – but for most of us, sleep returns to our normal fairly quickly. For some of us, though, sleep problems continue for weeks, months or even years. And for people living with persistent pain, sleep can be one of the most difficult things to deal with, yet it’s also one of the most common (McCracken & Iverson, 2002). Studies of sleep problems in people with fibromyalgia show abnormal sleep continuity as well as changes in sleep architecture – this looks like increased number of times waking, a reduced amount of slow wave sleep and an abnormal alpha wave intrusion in non rapid eye movement, termed alpha-delta sleep (Dauvilliers & Touchon, 2001). People with fibromyalgia may also experience primary sleep disorder such as sleep apnoea or periodic leg movements during sleep.

The effect of rotten sleep is quite clear: pain increases the day following a disrupted night’s sleep, while high levels of pain on one day has less of an impact on subsequent sleep – but if you’ve been sleeping poorly for a while, all of this becomes something of a blur (Johnson, Weber, McCrae & Craggs, 2017; Slavish, Graham-Engeland, Martire & Smyth, 2017)! When we add in the effects of poor sleep on daily activity, and begin to unpack the relationships between sleep, pain and mood (Goerlitz, Sturgeron, Mackey & Darnell, 2017) well it’s a bit of a complicated matter, and one that I think we need to address when someone comes in for help with their pain.

Assessing unrefreshing sleep or poor sleep can be a reasonably straightforward process, but it needs to be carried out systematically. The event/s that initiate poor sleep may be very different from the events that maintain poor sleep, and while it’s interesting to know what started the sleep difficulties – in the end it’s possibly more important to work out what’s maintaining it.

The following is my attempt to outline what I look for when I’m discussing sleep with someone.

1. Is sleep really a problem? Sounds a bit odd, but some people have a strong belief that they need a certain number of hours of sleep a night, and when they’re not getting that magical number, it can be quite worrying – and actually kick off a sleep problem!

  • My key question here is do you wake feeling like you’ve had a good sleep? The number of hours of sleep is irrelevant, to a large extent, if you wake up feeling refreshed. If the person I’m talking to wakes up feeling OK I quickly swing into trying to understand why they’re worried about their sleep – and reassuring them that having a certain sleep duration is not fixed. In fact, sleep length changes over time – remember when you were a kid and slept for hours and hours? And when you were a teen and sleep in until midday if you could, but stayed up most of the night? These are pretty normal changes in pattern and nothing to worry about.

If you don’t feel refreshed, then I dig a little deeper…

2. What’s your sleep routine? This is about finding out the time someone goes to bed, how long it takes to fall asleep, what time a person wakes up, and gets up. I’ll also ask about the pre-bedtime routine: what’s the evening routine like? when do the screens go off? what’s the last drink of the evening? what’s the bedroom environment like?

  • I’m looking for a consistent bedtime at around the same time each night, a “wind down” ritual where the same things happen each night to prime the mind for sleep. I’m also looking for factors that might make it more difficult to fall asleep once in bed – screen time (devices, laptops, TV), dealing with worries, solving problems, having arguments, difficulty getting comfortable.
  • I’m also looking for a consistent wake up time, and whether the person gets out of bed then – or lies in bed and maybe falls asleep again…
  • A comfortable room temperature, a dark room, relatively little noise: all of these very basic things help keep bed for sleep (and sex) but not for much else.

The reason these basic “sleep hygiene” factors help is that our sleep pattern is malleable. It changes depending on environmental factors like light, noise and temperature. This is why we end up having jetlag – it takes a little while to adjust to the new daily light patterns (especially when you travel from Christchurch, NZ to somewhere like Norway!). Our body temperature drops during the night, our digestive processes slow down (that’s why we tend not to do “number twos” at night) and why we pee a lot less at night than during the day. Setting up a consistent routine helps us retain these habits and “teach” the mind/body to sleep at the correct time.

3. What substances do you use? I’m interested in the usual suspects: caffeine (not only coffee, but tea, energy drinks, dark chocolate), but also alcohol, the timing of medications, and that late night snack.

  • When sleep onset is a bit fragile it’s probably best not to have coffee and allied substances after mid-afternoon, and for some people (like me!) it’s best not to have them after lunch.
  • Medications for persistent pain are often sedating, so people need to know how to use this side effect for the best – and that often means taking medications earlier than first thought.
  • It also means for us, recognising that some medications alter sleep architecture (particularly meds given for, paradoxically, insomnia!). Alcohol might help people get to sleep but it changes the sleep architecture, preventing you from falling into that deepest sleep phase – and waking you up to pee halfway through the night, if you don’t do that already!
  • I also check whether people are smokers, and if they are, whether they wake in the morning absolutely gasping for a smoke, or whether they smoke during the night. Nicotine withdrawal can keep someone awake during those brief periods before and after dreaming sleep, so may need to be managed with patches.
  • Food is also something I check – snacks at midnight are the stuff of school stories, but can become a learned behaviour that we associate with being awake at that time, and maintain disrupted sleep. Maybe a mid-evening protein-based snack is a better option.

4. What’s going through your mind (or what’s your mind telling you) about your sleep? Having hopefully dealt with the basics of sleep hygiene (though I haven’t included exercise yet – that’s coming!), I’m keen to understand the person’s mind chatter about their sleep.

  • Worries, rumination and attempts at problem-solving (yes I’ve solved the problem of world peace!) can all keep us from falling asleep. What we do about those thoughts depends on the sleep management approach we’re using.
  • Often, the worries are actually worries about not sleeping – that paradoxically keep us from falling asleep! Feeling bothered about “how am I going to cope tomorrow if I don’t sleep”, or “I’m going to be so tired tomorrow, I know I won’t manage” are really common.
  • Along with worries about not sleeping, every other unsolved problem seems to pop up courtesy of your mind – this can happen because the person is too busy during the day to stop and ponder (and it’s quiet at night… fewer distractions!) so it’s worth finding out what is going through the person’s mind and dealing with those issues.

5. What’s your pattern of sleeping through the night? This is about the pattern of arousals – when, how long for, what the person does during these times.

  • Some understanding of normal sleep architecture is useful here so you can help the person understand why waking just before/just after dreams occurs.
  • Reviewing the habits at these times helps to understand the factors that maintains being awake at the wrong times! Waking briefly but without being aware of it is normal, but when internal or external factors intrude during lighter periods of sleep, we become more aware of being awake and can begin to do things that keep us awake, like watching TV, turning the radio on, having a snack, worrying.

To be continued…

These are some of the very fundamentals of assessing sleep problems. Next week I’ll review some more – and the week after look at strategies that can help!

 

Dauvilliers, Y., & Touchon, J. (2001). Le sommeil du fibromyalgique : Revue des données cliniques et polygraphiques (sleep in fibromyalgia patients: Clinical and polysomnography pattern.). Neurophysiologie Clinique/Clinical Neurophysiology, 31(1), 18-33. doi:https://doi.org/10.1016/S0987-7053(00)00240-9

Goerlitz, D., Sturgeron, J., Mackey, S., & Darnall, B. (2017). (395) sleep quality and positive affect as mediators of daily relationship between pain intensity and physical activity. The Journal of Pain, 18(4), S73.

Johnson, M., Weber, J., McCrae, C., & Craggs, J. (2017). (397) the catch 22 of insomnia and chronic pain: Exploring how insomnia and sleep impact the neural correlates of chronic pain. The Journal of Pain, 18(4), S73-S74.

McCracken, L. M., & Iverson, G. L. (2002). Disrupted sleep patterns and daily functioning in patients with chronic pain. Pain Research & Management, 7(2), 75-79.

Slavish, D., Graham-Engeland, J., Martire, L., & Smyth, J. (2017). (394) bidirectional associations between daily pain, affect, and sleep quality in young adults with and without chronic back pain. The Journal of Pain, 18(4), S73.

Pain – or disability?


One of the fundamental distinctions we need to make when working with people who experience pain is to understand the difference between experiencing pain – and the behaviour or actions or responses we make to this experience. This is crucial because we can never know “what it is like” to experience pain – and all we have to rely on as external observers is what we see the person doing. Differentiating between the various dimensions associated with our experience of pain makes it far easier to address each part in the distinct ways needed.

Let me explain. We know the current definition of pain – an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in such terms (IASP, 1979). One of the key points of this definition was to remove the need for nociception as a requirement for pain to be present. So when we unpack what we understand about pain, the first step is to recognise that it’s an experience. Something we can never share with another person – just like we can’t share joy, the taste of a great craft beer, or what a lover’s touch is like.

We therefore have an inexact relationship between two concepts: nociception, or the biological mechanisms at play until the point at which we are conscious of pain; and pain, or the experience of what it is like to have an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in such terms.

But wait, there’s more. Given that this experience is a subjective, internal and personal experience – how do we know when someone is experiencing pain?

When I ask students, their answer is “oh you can see grimacing, wincing, or they tell you” – and it’s true! But let’s notice something: they’re all behaviours. Things people do, either involuntarily or voluntarily, to signal that they’re sore. Behaviours or actions are not a direct indication of “what it is like” to experience pain. Like nociception and pain, there is an inexact relationship between what someone does when they’re experiencing pain – and their resultant behaviour. So we now have three somewhat overlapping concepts: nociception (biology), pain (experience), and behaviours (actions). They overlap because there is no direct 1:1 relationship between these concepts – although in some cases it may seem like there is.

What else influences our pain experience? If you’ve been paying attention to my blog these last few weeks, you’ll know that thoughts or beliefs and emotions also influence both our experience of pain and our behaviour. For example, if we know that the pain we’re experiencing is for good (such as post-surgical pain after hip replacement), we tend to be more forgiving, or at least more willing to experience it than if someone attacked us with a scalpel down some back alley! We have plenty of evidence that simply knowing the supposed cause, and something about the biology of pain, can help people to feel a little differently about it (emotions), and to move differently (behaviour) (Moseley & Butler, 2015; Tegner, Frederiksen, Esbensen & Juhl, in press), while emotions in both experimental and clinical studies have been shown to strongly affect pain intensity – and subsequent behavioural responses (Orenius, Raij, Nuortimo, Naatanen, Lipsanen, & Karlsson, 2017). Once again, the relationships are not exact – which is almost always the case when we’re studying complex systems!

Because thoughts, beliefs and emotions have both impacts on nociceptive processes and on pain experience and behaviours, I’ve depicted them as overlapping (if there was a way to show this in 3-D believe me, I would!).

But wait, there’s more!

We know context makes an enormous difference to a person’s experience of pain AND the behaviours they take in response to their pain. While contextual factors don’t directly influence nociception, these factors do influence thoughts and beliefs, emotions, and behaviour. For example, we know that in adolescents with pain, parental responses influence the amount of treatment seeking (Stone, Bruehl, Smith, Garber & Walker, 2018); and that spouses or partners of people living with pain can affect both pain intensity and behaviour because of the way they interact (Burns, Post, Smith, Porter, Buvanendran, Fras & Keefe, 2018). We also know that in different communities, responses to pain can differ: people who pursue body suspension (being pierced and suspended by hooks) are supported by those around them to “hang in there” (no pun intended!). Factors such as legislation make a difference to pursuing treatment, while treatment itself can perpetuate disability and may even increase attention to pain.

Why bother explaining all this?

The implications of understanding these associations are quite profound. Firstly, nociception is a small but important contributor to our pain experience. Most pain starts with a nociceptive stimulus, even if it ultimately ends up less influential than cortical ‘interpretive’ processes. Secondly, the experience we have of pain is something we can’t share – and thirdly the only way we can begin to infer that another person has pain is via their behaviours, or what they do. This means pain measures like the visual analogue scale, FACES scale, numeric rating scale are not direct measures but are used by people to give a message about their pain. All behaviour is influenced by both our thoughts/beliefs and emotions and contextual factors including who is nearby, past responses they’ve made to our messages, what’s normal or expected in various contexts, and the purpose we believe our behaviour will serve. And of course, many of the influences and behaviours we do are not things we’re consciously aware of because we’ve been doing them since we were born.

So when I think about what we might do to help someone with their pain, I firstly acknowledge that I can’t directly influence someone’s own experience. I’m working to influence what they do about their pain, their relationship to their pain, their beliefs and understanding, their emotions and how they communicate this to other people around them. And to me, the first step is being ready to hear what people believe about their pain. Only after I’ve successfully conveyed this to the person can I ever begin to come alongside them to help them change what they do.

 

Burns, J. W., Post, K. M., Smith, D. A., Porter, L. S., Buvanendran, A., Fras, A. M., & Keefe, F. J. (2018). Spouse criticism and hostility during marital interaction: effects on pain intensity and behaviors among individuals with chronic low back pain. Pain, 159(1), 25-32.

Moseley, G. L., & Butler, D. S. (2015). Fifteen years of explaining pain: The past, present, and future. J Pain, 16(9), 807-813. doi:10.1016/j.jpain.2015.05.005

Orenius, T. I., Raij, T. T., Nuortimo, A., Näätänen, P., Lipsanen, J., & Karlsson, H. (2017). The interaction of emotion and pain in the insula and secondary somatosensory cortex. Neuroscience, 349, 185-194.

Porreca, F., & Navratilova, E. (2017). Reward, motivation, and emotion of pain and its relief. Pain, 158, S43-S49.

Stone, A. L., Bruehl, S., Smith, C. A., Garber, J., & Walker, L. S. (2018). Social learning pathways in the relation between parental chronic pain and daily pain severity and functional impairment in adolescents with functional abdominal pain. Pain, 159(2), 298-305.

Tegner, H., Frederiksen, P., Esbensen, B. A., & Juhl, C. (2018). Neurophysiological pain-education for patients with chronic low back pain-a systematic review and meta-analysis. The Clinical Journal of Pain.

Clinical reasoning – and cognitions


Possibly one of the most hotly discussed aspects of clinical reasoning and pain relates to thoughts and beliefs held by both people experiencing pain and the clinicians who work with them. It’s difficult to avoid reading papers about “pain education”, “catastrophising”, “maladaptive thinking”, but quite another to find a deeper analysis of when and why it might be useful to help people think differently about their pain, or to deal with their thoughts about their experience in a different way.

Cognition is defined by the APA Dictionary of Psychology as

1. all forms of knowing and awareness, such as perceiving, conceiving, remembering, reasoning, judging, imagining, and problem solving. Along with affect and conation, it is one of the three traditionally identified components of mind.

2. an individual percept, idea, memory, or the like. —cognitional adj. —cognitive adj.

Cognitions are arguable The Thing most accessible to ourselves and most distinctive about humans – indeed, we call ourselves “homo sapiens” or “wise man” possibly because we can recognise we have thoughts! Although, as you can see from the definition above, many aspects of cognition are not as readily available to consciousness as we might imagine.

From the early days of pain management, explanations about the biology of pain have been included. Indeed, since 1965 when Melzack and Wall introduced the Gate Control Theory, in which modulation and descending control were identified, clinicians working in pain management centres have actively included these aspects of pain biology as part of an attempt to help people with pain understand the distinction between hurting – and being harmed (see Bonica, 1993).

The purpose behind the original approaches to “explaining pain” were to provide a coherent explanation to people in pain as to the “benign” nature of their experience: in other words, by changing the understanding people held about their pain, people were more likely to willingly engage in rehabilitation – and this rehabilitation largely involved gradually increasing “up time” and reducing unhelpful positions or activity levels. Sound familiar? (see Moseley & Butler, 2015).

Of course, in the early days of pain management, specific relationships between thoughts and both automatic and volitional behaviour were unclear. What we know now is that if I wire someone up to a biofeedback machine, measuring say heart rate variability, respiration and skin conductance, and then I mention something related to the person’s appraisals of their pain – maybe “Oh this really hurts”, or “I don’t think I’ll sleep tonight with this pain” those parameters I’m measuring will fluctuate wildly. Typically, people will experience an increase of physiological arousal in response to thinking those kinds of thoughts. In turn, that elevated arousal can lead to an increased perception of pain – and increased attention to pain with difficulty taking attention off pain (see Lanzetta, Cartwright-Smith & Eleck, 1976; Crombez, Viane, Eccleston, Devuler & Goubert, 2013).

So, the relationship between what we think and both attention to pain and physiological response to those thoughts is reasonably well-established, such that if someone reports high levels of catastrophising, we can expect to find high levels of disability, and reports of higher levels of pain. So far, so good. BUT how do we integrate these findings into our clinical reasoning, especially if we’re not primarily psychologically-oriented in our treatments?

The answer has been to dish out “pain education” to everyone – giving an explanation of some of the biological underpinnings of our experience. But for some of our patients this isn’t useful, especially if they have already heard the “pain talk” – but it has only hit the head and not the heart.

As Wilbert Fordyce was known to say “Information is to behaviour change as spaghetti is to a brick”. In other words – it might hit the brick and cover it, but it doesn’t change the brick, and neither does it move the brick!

You see, cognitions are not just “thoughts”, nor thoughts we are consciously aware of. Cognitions include implicit understanding, attention, the “feeling of what it is like to” and so on. And as occupational therapists and educators have found over the years, experiential learning (learning by doing) is one of the most powerful forms of behaviour change available (Kolb, 2014). People learn by experiencing something different. This is why cognitive behavioural approaches such as Acceptance and Commitment Therapy (ACT) so strongly endorse experiential elements.

Rather than attempting to change someone’s head knowledge of pain=harm, it might be more useful to help them experience doing something different and help them explore and generate their own conclusions from the experience.

I think both occupational therapists and clinicians who provide opportunities for movements and experiences (such as massage therapists, physiotherapists, osteopaths, chiropractors, myotherapists etc) are in an ideal position to guide people through new experiences – and then help them explore those new experiences. Rather than telling people what to think or believe (especially amongst those folks who are unconvinced by “book learning”!) we’re in a good position to help them work out what’s going through their minds – and what it feels like to do something differently. Instead of convincing, we can help people ponder for themselves. This is the essence of graded exposure: going from “OMG I can’t do that!” to “Oh yeah, I can master this”. It’s the difference between reading about how to ride a bicycle – and actually getting on a bike to learn to ride.

I agree that cognitive processes are really important in understanding a person’s experience of pain. I think, though, we’ve focused on overt thoughts to the detriment of trying to understand other aspects of cognition. We need to spend some more time exploring attention and distraction from pain; memories and how these influence pain; and to examine some of the implicit features of our understanding – and instead of approaching changes to thinking/understanding via the hammer of information dumping, maybe we can ponder the opportunities that arise from helping people experience something different and new.

 

 

Bonica, J. J. (1993). Evolution and current status of pain programs. Journal of Pharmaceutical Care in Pain & Symptom Control, 1(2), 31-44. doi:10.1300/J088v01n02_03

Crombez, G., Viane, I., Eccleston, C., Devulder, J., & Goubert, L. (2013). Attention to pain and fear of pain in patients with chronic pain. Journal of Behavioral Medicine, 36(4), 371-378.
Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development (2nd Ed), Pearson Education: New Jersey.
Lanzetta, J. T., Cartwright-Smith, J., & Eleck, R. E. (1976). Effects of nonverbal dissimulation on emotional experience and autonomic arousal. Journal of Personality and Social Psychology, 33(3), 354.

Moseley, G. L., & Butler, D. S. (2015). Fifteen years of explaining pain: The past, present, and future. Journal of Pain, 16(9), 807-813. doi:10.1016/j.jpain.2015.05.005

Teamwork: Gaps or overlaps?


For many years now, interprofessional/multidisciplinary teams have been considered the best model for delivering pain management. This stems from studies conducted right back as far as J J Bonica in 1944 (Bonica, 1993), and originally referred to teams consisting of several medical specialties. Bonica later initiated a multidisciplinary/interdisciplinary pain programme in 1960, including 20 people from 14 medical specialties “and other health professions”. In 1977, Bonica and Butler classified pain programmes into five groups – major comprehensive multidisciplinary programmes – more than six disciplines and involved in education and research; comprehensive multidisciplinary – four to six disciplines and involved in education and research; small multidisciplinary – 2 or 3 disciplines; syndrome-oriented specialising in single diagnoses; and modality-oriented using a single treatment. There were, at the time, 327 facilities around the world – including New Zealand (The Auckland Regional Pain Service).

Bonica didn’t comment on the team structure of these facilities, nor on the mix of “other health professions” involved. There has been a significant reduction in the numbers of comprehensive pain management centres, particularly in North America since the 1990’s. Fragmented, unidimensional treatment seems to be far more common than integrated multidimensional approaches.

Why might teamwork and structure of teams be important in pain management?

I like this discussion of why interprofessional/interdisciplinary teams might be more effective in pain management than multidisciplinary: “Multidisciplinary teams are unable to develop a cohesive care plan as each team member uses his or her own expertise to develop individual care goals. In contrast, each team member in an interdisciplinary team build on each other’s expertise to achieve common, shared goals. Therefore, it is crucial to indicate that multidisciplinary teams work in a team; whereas, interdisciplinary teams engage in teamwork.”

The argument for interprofessional teams in pain management is that by drawing on a common model of pain, each profession can align their treatments to meet the person’s goals, using a common framework, language and broad principles. But, and it’s a big but, this model depends on mutual trust, respect and time spent together developing a common understanding of each team member’s contributions. This is not something in which many health professionals have much training. For a good discussion of ways to foster good dynamics, Youngwerth and Twaddle’s 2011 paper is a nice place to start.

Why write about this now?

I was prompted to write about this because of a set of questions I was posed by a group of clinicians from another profession. We ostensibly work in a team, under the ACC Pain Contracts which specify a “multidisciplinary” approach. The questions, however, reflected both a lack of knowledge about pain management group programmes, and a lack of respect for the clinical skills provided by the people who deliver the programme I’ve developed. And it’s not the first instance of such behaviour.

I rarely criticise New Zealand healthcare policy, at least not on the pages of this blog. In this instance, though, I think it’s time to point out some of the issues that are present in the way pain contracts are being delivered since late 2016.

For those who’re not aware, ACC is NZ’s only personal injury insurer, owned by the country, with no-fault, 24 hour cover. That means anyone who has an accidental injury in NZ firstly can’t sue, and secondly has their treatment and rehabilitation paid for. Like most personal injury insurance companies, ACC’s main problem is the burden of long-term claims where often the main issue preventing return to work and case closure is persistent pain. As a result, pain services have been provided under ACC rehabilitation policy under a “provider-funder split” model since 2000.

ACC contracts providers to deliver pain management services. These services were to involve a number of designated professions, and these professionals were to be at least two years post-graduation, and to have completed postgraduate education in pain and pain management. And no, I don’t think a weekend course counts as “postgraduate education”. Unfortunately, the remuneration under these contracts is incredibly low. Remuneration rates are pre-determined by ACC, so that occupational therapy and physiotherapy are given one hourly rate, psychologists have a higher rate, and medical practitioners have the highest rate of all. There’s no variation in rates to fund experienced clinicians, so everyone gets the same amount irrespective of skill level. There is little to no allowance for team meetings, and there’s no allowance for screening or reporting included in the funding for the group programme I’ve developed.

Aside from the low funding, there are other concerns for me. There has been no auditing of the providers delivering these services. As a result, large businesses naturally try to maximise profit, employing entry-level clinicians for the contracts. Incredibly challenging for new graduates who have had limited exposure to persistent pain and pain management, and often apply acute pain management principles to chronic conditions. And that risks prolonging disability and exacerbating distress of people needing help.

Secondly, because these are new contracts, with quite different requirements from earlier iterations, groups have had to recruit a great many clinicians. Some of those clinicians presumed, I think, that their professional qualification is sufficient to work with people who have persistent pain. Even if their training had no pain content. ACC considers professional registration to be quite sufficient to practice in this area. While some of these clinicians are very experienced – pain management is not simple, and it is specialised. I have heard of practitioners continuing to use gate control theory as their primary “pain education”. While it’s an advance on being told you have “somatic disorder”, it doesn’t exactly reflect modern pain concepts. Again, using outdated information risks prolonging disability and exacerbating distress in a group of vulnerable people.

Teams to deliver pain contracts were often assembled in haste. Processes of induction, continuing education, developing a common clinical model, knowledge of other professionals’ contributions have all suffered as a result. Multidisciplinary practice is the norm – as one person I know used to put it, it’s “serial monotherapy”. Decision-making processes haven’t been developed, and integrating a clinical model common to all – and therefore abolishing a hierarchical structure – has just not happened. Instead a hierarchical, patch-protecting, and disjointed model where professionals are pitted against one another to gain some kind of dominance is emerging. A far cry from a mutually-respectful, integrated, non-hierarchical interprofessional team environment that research suggests is best for delivering pain management (Gatchel, McGeary, McGeary & Lippe, 2014).

When high value, low cost treatments for persistent pain are under-funded, and when costly yet ineffective treatments such as surgery continue being delivered, it’s the people who most need help who are harmed. I suppose what’s even more concerning is that despite 1 in 5 NZers living with pain lasting more than three months, and ACC claimants representing a small proportion of those living with pain, there is no New Zealand strategy for chronic pain management. People on ACC are, in most ways, rather lucky despite the failings of this contracting system.

The pain contracts could have represented an opportunity for innovation and an expansion of understanding between professions, what has happened instead is a tendency to deliver formulaic, ritualised programmes with gaps and overlaps, as a result of underfunding, poor quality control and both ignorance and power play in some instances.

We used to be world leaders in pain management. We have failed to capitalise on our headstart.  We should do better. We must do better for people living with pain.

 

Bonica, J. J. (1993). Evolution and current status of pain programs. Journal of Pharmaceutical Care in Pain & Symptom Control, 1(2), 31-44. doi:10.1300/J088v01n02_03

Gatchel, R. J., McGeary, D. D., McGeary, C. A., & Lippe, B. (2014). Interdisciplinary chronic pain management: past, present, and future. American Psychologist, 69(2), 119.

Youngwerth, J., & Twaddle, M. (2011). Cultures of interdisciplinary teams: How to foster good dynamics. Journal of Palliative Medicine, 14(5), 650-654.

Clinical reasoning in pain – emotions


The current definition of pain includes the words “unpleasant sensory and emotional experience” so we would be surprised if we encountered a person with pain who wasn’t feeling some sort of negative emotion, am I right? Yet… when we look at common pain assessments used for low back pain, items about emotions or worries are almost always included as indicators of negative outcomes (for example, STarTBack – Worrying thoughts have been going through my mind a lot of the time, I feel that my back pain is terrible and it’s never going to get any better, In general I have not enjoyed all the things I used to enjoy). And while the screening questionnaires have been validated, particularly for predictive validity (ie higher scores obtained on these measures are associated with poorer outcomes), I wonder how much we know, or think we know, about the relationship between emotions and pain. Perhaps its time for a quick review…

Firstly, let’s define emotions (seems easy!) “Emotions are multicomponent phenomena; (2) emotions are two-step processes involving emotion elicitation mechanisms that produce emotional responses; (3) emotions have relevant objects; and (4) emotions have a brief duration.” (Sander, 2013). There are thought to be six evolutionarily shaped basic emotions such as joy, fear, anger, sadness, disgust, and surprise (Ekman, 1992); but as usual there are complications to this because emotions are also examined in terms of their valence – negative or positive – and arousal (similar to intensity, but in terms of how much our physiology gets excited).

There are two main brain areas involved in processing both pain and unpleasant stimuli in general are the amygdala and the prefrontal cortex. These areas don’t exclusively deal with pain but with stimuli that are especially salient to people (remember last week’s post?), and researchers are still arguing over whether particular areas are responsible for certain emotions, or whether “emotions emerge when people make meaning out of sensory input from the body and from the world using knowledge of prior experience” based on basic psychological operations that are not specific to emotions (Lindquist et al., 2012, p. 129) . I’m quoting from an excellent book “The neuroscience of pain, stress and emotions” by Al, M. Absi, M.A. Flaten, and M. Rogers.

Now researchers have, for years, been interested in the effects of emotions on pain – there is an enormous body of literature but luckily some good reviews – see Bushnell et al., 2013; Roy, 2015 ;  Wiech and Tracey, 2009. What this research shows, essentially, is that pain is reduced by positive emotions, and increased by negative emotions. Now we need to be somewhat cautious about over-interpreting these results because they’re mainly conducted in experimental designs with acute experimental pain – people are shown pictures that elicit certain emotions, then poked or zapped, and asked to rate their pain (and their emotions, usually). It’s thought that the way these emotions influence pain is via our descending inhibitory pathways. Now the situation with real people experiencing pain that is not experimentally administered is probably slightly different – a lot more salient, a lot more worrying, and far less controlled. Nevertheless it’s worth knowing that when you’re feeling down, you’re likely to rate your pain more highly. If the emotion-eliciting stimuli are particularly arousing (ie they’re REALLY interesting) then the effect on pain ratings is greater. Experimenters also found pain reduces responses to pleasant stimuli, but there isn’t such a strong relationship with negative stimuli.

The valence (positiveness or negativeness – if that’s a word LOL) activates motivational systems either pleasant = appetitive, or unpleasant = defensive. Arousal or alertness gives us a clue as to how much motivation we have to either move towards or away from the stimulus. The degree of arousal affects our pain experience – so the more negative and angry we are, we rate our pain more highly; while the happier and jollier we are, we rate our pain as less intense. BUT, as for most things in pain, it’s complex – so once we get more than moderately angry/alert/aroused, the less we experience pain. The diagram below shows this kind of relationship – from the same book I quoted above (it’s worth getting!).

Does this mean we should freak people out so they experience less pain? Don’t be dumb! Being that alert is really exhausting. But what this diagram can explain is why some people, when they’re first attending therapy and are asked to do something out of the ordinary and just so slightly threatening (like lifting weights, or jumping on a treadmill) might report higher pain intensity – because we’ve caught them at the moderate arousal level where pain is facilitated.

Clinically, what this information means is that if we’re hoping to improve someone’s pain via pleasant or positive emotions, we’d better make sure they’re fairly high energy/arousing – a hilarious comedy perhaps – because lower intensity pleasure doesn’t affect pain much.

We should, at all costs, avoid eliciting fear and worry, or anger in the people we treat – because this increases pain intensity. This means giving people time to get used to our setting, what we’re asking them to do, and the intensity of whatever activity we’re going to do with them. In graded exposure, we should give people skills in mindfulness well before we begin doing the exposure component – because it’s likely to evoke higher than usual pain intensity if they can’t “be with” the increased anxiety that emerges during this kind of treatment.

And finally, if someone is experiencing anger, depression, sadness or anxiety – this is a normal psychological reaction integral to our experience of pain. It’s not necessarily pathological – though it probably increases the pain intensity the person reports.

I think we could promote far more scheduling pleasurable experiences as a routine part of therapy. What makes people smile, feel joy, have a good belly laugh? When was the last time they watched a comedy or joked with their family? Therapy can be fun, just see my friend Alice Hortop’s work on comedy as therapy (https://alicehortop.com/)!

 

 

Ekman, P.  (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.

 

 

 

Flaten, M. A. (2016). The neuroscience of pain, stress, and emotion : Psychological and clinical implications. In Al, M. Absi, M. A. Flaten, & M. Rogers (Eds.), Neuroscience of Pain, Stress, and Emotion: Amsterdam, Netherlands : Elsevier.

K.A. Lindquist, T.D. Wager, H. Kober, E. Bliss-Moreau, L.F. Barrett, (2012). The brain basis of emotion: a meta-analytic review. Behavioral and Brain Sciences, 35 (03),  121–143

 

 

Roy, M. (2015). Cerebral and spinal modulation of pain by emotions and attention. Pain, Emotion and Cognition, 35–52.

 

Sander, D. (2013). Models of emotion: the affective neuroscience approach. in J.L. Armony, P. Vuilleumier (Eds.), The Cambridge handbook of human affective neuroscience, Cambridge University Press, Cambridge, pp. 5–56

 

 

 

Clinical reasoning and why models of low back pain need to be integrated


Clinical reasoning has been defined as “the process by which a therapist interacts with a patient, collecting information, generating and testing hypotheses, and determining optimal diagnosis and treatment based on the information obtained.” (thanks to https://www.physio-pedia.com/Clinical_Reasoning#cite_note-Higgs-1). The model or lens through which we do these processes naturally has a major influence on our relationship with the person, the information we think is relevant, the hypotheses we develop, and ultimately the problems we identify and how we treat them. No arguments so far, yes?

So when we come to thinking about pain, particularly where a “diagnosis” can’t be readily established – or where the treatment doesn’t directly address a proposed causal factor – clinical reasoning should be led by some sort of model, but how explicit is our model, really? And, what’s more, how well does the research support our model, and the relationships between variables?

I’m thinking about my approach as an occupational therapist where my interest in assessment is to identify why this person is presenting in this way at this time, and what might be maintaining their current predicament; and my aim is to identify what can be done to reduce distress and disability, while promoting participation in daily occupations (activities, things that need to be done or the person wants to do). For many years now I’ve used a cognitive behavioural model first developed by Dr Tim Sharp who has now moved into Positive Psychology. His reformulation of the cognitive behavioural model works from the “experience” of pain through to responses to that experience, but incorporates some of the cyclical interactions between constructs. The model doesn’t include inputs to the “experience” component from the nociceptive system – but it could.

Many other models exist. Some of them are quite recent – the STarT Back Tool, for example, provides a very simplified screening approach to low back pain that some people have identified as a clinical reasoning model. Another is by Tousignant-Laflamme, Martel, Joshi & Cook (2017), and is a model aimed at pulling all the various approaches together – and does so with a beautifully-coloured diagram.

But.

You knew there would be one! What I think these two models omit is to generate some relationships between the constructs, particularly the psychological ones. You see, while it’s a cyclical interaction, there are some relationships that we can identify.  And over the next few weeks I’ll be writing about some of the known associations, just to begin to build a picture of the relationships we can assess before we begin generating hypotheses.

For example, we know that the nervous system, and in particular our mind/brain, is never inactive and is therefore never a completely blank slate just waiting for information to come into it, but we also know there are relationships between the intensity/salience/novelty of a stimulus that attract attention, and that this competes with whatever cognitive set we have operating at the time (Legrain, Van Damme, Eccleston, Davis, Seminowicz & Crombez, 2009). So one relationship we need to assess is current contexts (and there are always many), and the times when a person is more or less aware of their pain.

Now, what increases the salience of a stimulus? For humans it’s all about meaning. We attribute meaning to even random patterns (ever seen dragons and horses in the clouds?!), so it’s unsurprising that as we experience something (or watch someone else experiencing something) we make meaning of it. And we generate meanings by relating concepts to other concepts – for a really good introduction to a very geeky subject, head here to read about relational frame theory. Relational frame theory is used to explain how we generate language and meanings by relating events with one another (The Bronnie translation! – for an easier version go here). Wicksell and Vowles (2015) describe this, and I’m going to quote it in full:

As described by relational frame theory, the theoretical framework underlying ACT, stimulus functions are continuously acquired via direct experiences, but also through their relations with other stimuli [5]. This implies that a behavioral response is not due to just one stimuli but rather the relational network of stimuli. Pain as an interoceptive stimulus is associated with a large number of other stimuli, and the actions taken depend on the psychological function(s) of that relational network of stimuli. A seemingly trivial situation may therefore elicit very strong reactions due to the associations being made: a relatively modest pain sensation from the neck trigger thoughts like “pain in the neck is bad,” which in turn are related to ideas such as “it may be a fragile disk,” and “something is terribly wrong,” that eventually lead to fatalistic conclusions like “I will end up in a wheelchair.” Thus, even if the initial stimulus is modest, it may activate a relational network of stimuli with very aversive psychological functions.

In other words, we develop these networks of meaning from the time we’re little until we die, and these mean any experience (situation, context, stimulus, event, action) holds meaning unique and particular to the individual. And these networks of meaning are constructed effortlessly and usually without any overt awareness. Each event/experience (yeah and the rest) then has further influence on how we experience any subsequent event/experience. So if you’ve learned that back pain is a Very Bad Thing, and you’ve done so since you were a kid because your Mother had back pain and took herself to the doctor and then stopped playing with you, you may have a very strong network of relationships built between low back pain, resting, healthcare, abandonment, sadness, anger, loneliness, fear, mother, father, pills, treatment – and the this goes on.

So when we’re beginning to construct a clinical reasoning model for something like low back pain we cannot exclude the “what does it mean” relationship. Every time someone experiences “ouch!” they’re processing a network of associations and relationships and behaviours that go on to influence their response to that experience – and affect attention to it and subsequent response to it.

Over 1000 words and I’ve not even started on emotions and pain!

Take home message: Even if we think we’re not addressing “psychological” stuff – we ARE. Omitting the “what does it mean to you?” and failing to factor that in to our clinical reasoning and subsequent treatment means we’re walking uphill on a scree slope. Oh, and telling someone they’re safe does not change those associations, especially if they’re longstanding. There’s more needed.

 

Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, & Crombez G (2009). A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain, 144 (3), 230-2 PMID: 19376654

Sharp, T. J. (2001). Chronic pain: A reformulation of the cognitive-behavioural model. Behaviour Research and Therapy, 39(7), 787-800. doi:http://dx.doi.org/10.1016/S0005-7967(00)00061-9

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485

Wicksell, R. K., & Vowles, K. E. (2015). The role and function of acceptance and commitment therapy and behavioral flexibility in pain management. Pain Management, 5(5), 319-322. doi:10.2217/pmt.15.32

Do pain management programmes really influence “doing” in daily life?


Disability and coping are two of the most important targets in persistent pain management, along with distress and pain intensity (the latter perhaps being the most difficult to influence). A question, however, is whether existing measures of disability truly capture the activities or occupations that people most value. For example, if house cleaning is just not my thing, even if my functioning improved over the course of a programme, would I choose to spend that new capability on vacuum-cleaning or out there in the garden?!

The Westhaven-Yale Multidimensional Pain Inventory (MPI)(Kerns, Turk & Rudy, 1985)  is a true workhorse of pain management measurement: It’s a measure that provides, via the subscales, an estimate of the complex inter-relationships involved in pain-related disability and distress. Three profiles of coping approach have been derived from the MPI indicating “Adaptive Coping” – the person is likely to continue to improve and engage in living well if they carry on as they are; “Interpersonally Distressed” – the person is experiencing difficulties with relationships and is feeling unsupported by others around them; and “Dysfunctional” – the person is struggling with their pain, and both disability and distress can feel overwhelming.

But the disability components of the MPI don’t really indicate the kinds of activities that people might be passionate about – or those that are relevant to their lives. The items are about general activities people “typically” do – in a North American setting. I know they’ve been validated in many different populations but they still represent a general idea of activity and function rather than the unique and idiosyncratic occupations that people do. (What's the difference? An occupation is the unique way I perform the important tasks of my day - the way I dash around the house while simultaneously cleaning my teeth, getting the dogs outside, making sure the curtains are opened and the appliances off just before I head out the door! We could call this "getting ready for work" but the way I do it, and the way you do it is probably very different!)

Why is that important? Well, because people value different occupations differently, and because values drive motivation, a broad measure of disability may not capture the true value of a pain management programme. And this is why the Canadian Occupational Performance Measure (COPM) (Law, Baptiste, McColl, Opzoomer, Polatajko & Pollock, 1990) is often used by occupational therapists to establish exactly what it is a person wants to be able to do. Goal Attainment Scaling is another option.

The study

In this study by Persson, Eklund, Lexell & Rivano-Fischer (2017), the aims were to assess longterm changes in MPI profiles over the course of a year; to look at associations between “Adaptive Coper” profiles at follow-up and improvements in occupational performance; and to look at factors at baseline that might be used to predict changes over time. Participants were, as usual, attending a tertiary pain management centre at a University hospital. They took part in a 21 day programme (oh the luxury of time!), and were seen by a team working together (oh the luxury of a co-located team!) including a psychologist, physician, physiotherapist, occupational therapist and social worker (oh for interprofessional teamwork!). The measures taken at pre and post were the MPI, COPM, and background demographic details.

Now here’s where the analysis gets pretty technical: dropout rates and pre-treatment differences amongst the MPI profiles were analysed using Matt-Whitney U, Kruskal-Wallis, chi-squared and independent t-test. Cross-tabs were used to describe the distribution of the MPI profiles. McNemar’s test was used to assess changes over time on each of the four profiles, and ultimately the participants were grouped into four profiles: never AC (Adaptive coper); losing AC; gaining AC, and stable AC, and these groupings were used to analyse associations between changes in MPI profile and changes on COPM from baseline to follow-up. And this, folks, is why occupational therapists NEED to learn statistical analyses! Because they went on to use univariate and multivariate logistic regressions to see whether demographic factors would predict these profiles at follow-up, incorporating satisfaction and performance scores on COPM.

What did they find?

More participants started the programme with a profile of dsyfunctional or interpersonally distressed than adaptive coper – and at both discharge and follow-up the adaptive coping group increased to be the largest subgroup. 20% of the participants ended up in the “gaining AC” group, 11% the “stable AC” group, 6% formed the “losing AC” group, and 63% were never in the adaptive coping group at all. Not so terrific in terms of broad outcome measures, but pretty consistent with other programmes around the world.

On the more individualised outcome measure of the COPM, people in the never AC group showed least clinically relevant improvement, both the stable AC and gaining AC groups showed more improvement on occupational performance and satisfaction with performance than the never AC group, while the stable AC group improved more than the losing AC group in terms of occupational performance changes.

Long-term changes showed those who started as AC were more likely to stay that way over time, and baseline scores for occupational performance were significantly associated with being AC at follow-up – in other words, people who felt OK about what they could do in terms of occupation, tended to become more capable and less disabled over time as measured by the MPI. More importantly, those people who had higher baseline scores on occupational satisfaction were 1.3 times more likely to shift to the AC group over time. “Clinically relevant improvements on performance and satisfaction with performance at 1-year follow-up, in occupations prioritized by the participants, were associated with having an AC profile at follow-up.” (p. 6).

Confidence in doing important occupations breeds confidence in other parts of living with persistent pain.

What does this all mean anyway?

Well, importantly, people who shifted from one of the other profiles to adaptive coping over a year showed clinically relevant improvements in occupational performance and satisfaction with performance – the authors suggest these findings show improvements on and satisfaction with “doing and performing” important occupations. Not being classified into adaptive coping at any time was associated with least improvement in occupational performance and satisfaction. There is an association between “doing/performing” and “coping/adapting” that hasn’t really been studied. Perhaps starting with things people enjoy instead of beating them over the head with things they’ve never been interested in could improve pain management outcomes. Pain management programmes DO influence doing in real life – if real life doing is used as therapy!

The authors also point out that “30–47% of participants who did not show an AC profile at follow-up still showed clinically relevant improvements on occupational performance and on
satisfaction with occupational performance.” (p. 8) This suggests that the MPI coping profiles only represent one part of the outcomes that are important to individuals: occupation being the individualised daily doings that people value very highly, and pointing to the need to explore individualised outcome measurement in more studies. Given that patient-centred pain management is based on individual goals, using only generic measures is likely to give misleading outcomes about treatment efficacy.

 

Kerns IVRD,TurkDC, Rudy TE. (1985) West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain. 23:345–56

Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. (1990). The Canadian Occupational Performance Measure: an outcome measure for occupational therapy. Canadian Journal of Occupational Therapy. 57(2), pp82–7.

Persson, E., Eklund, M., Lexell, J., & Rivano-Fischer, M. (2017). Psychosocial coping profiles after pain rehabilitation: Associations with occupational performance and patient characteristics. Disability and Rehabilitation: An International, Multidisciplinary Journal, 39(3), 251-260.

Using more than exercise for pain management


In the excitement and enthusiasm for exercise as a treatment for persistent pain, I wonder sometimes whether we’ve forgotten that “doing exercise” is a reasonably modern phenomenon. In fact, it’s something we’ve really only adopted since our lifestyle has moved from a fairly physically demanding one, to one more sedentary (Park, 1994). I also wonder if we’ve forgotten that exercise is intended to promote health – so we can do the things we really want or need to do. Remembering, of course, that some people find exercise actually exacerbates their pain (Lima, Abner & Sluka, 2017), and that many folks experience pain as an integral part of their exercise (think boxing, marathon running, even going to a gym – think of the pain of seeing That Much Lycra & Sweat).

While it’s become “exercise as medicine” in modern parlance (Pedersen & Saltin, 2015; Sallis, 2009; Sperling, Sadnesara, Kim & White, 2017), I wonder what would happen if we unpacked “exercise” and investigated what it is about exercise that makes it effective by comparison with, say, activities/occupations that incorporate whole body movement?

One of the factors that’s often omitted when investigating coping strategies or treatments, especially lifestyle/self management ones, is the context and meaning people give to the activity. Context is about the when, where and how, while meaning is the why. Whether the positives (meaning, and values people place on it) outweigh the negatives (let’s face it, the lycra and sweat and huffing and puffing does not inherently appeal) are factors that enhance (or not) adherence to exercise and activity. One positive is a sense of flow, or “an optimal subjective psychological state in which people are so involved in the activity that nothing else seems to matter; the experience itself is so enjoyable that people will do it even at great cost, for the sheer sake of doing it”(Csikzentmihalyi, 1990, p. 4). I can think of a few things I lose myself in – reading a good book; fishing; paddling across a lake; photography; silversmithing; gardening…

Robinson, Kennedy & Harmon (2012) examined the experiences of flow and the relationship between flow and pain intensity in a group of people living with persistent pain. Their aim was to establish whether flow was an “optimal” experience of people with chronic pain. Now the methodology they used was particularly interesting (because I am a nerd and because this is one technique for understanding daily lived experiences and the relationships between variables over time). They used electronic momentary assessment (also known as ecological momentary assessment) where participants were randomly signaled seven times a day for one week to respond to a question about flow. Computationally challenging (because 1447 measurement moments were taken – that’s a lot of data!), although not using linear hierarchical modeling (sigh), they analysed one-way between group analyses of variance (ANOVA) to explore differences in pain, concentration, self-esteem, motivation, positive affect and potency across four named states “flow, apathy, relaxation and anxiety”. We could argue about both the pre-determined states, and the analysis, but let’s begin by looking at their findings.

What did they find?

People in this study were 30 individuals with persistent pain attending a chronic pain clinic. Their ages ranged from 21 – 77 years, but mean age was 51, and there were 20 women and 10 men (remember that proportion). People had a range of pain problems, and their pain had been present for on average 68 months.

The contexts (environments) in which people were monitored were at home, or “elsewhere”, and, unsurprisingly, 71% were at home when they were asked to respond. Activities were divided into self-care, work and leisure (slightly less time in work than in leisure or self care respectively).  The purpose of the activities were necessity (35%), desire (40%), or “nothing else to do” (18%). And most people were doing these things with either alone or with family, with very small percentages with friends, colleagues or the general public.

Now we’d expect that people doing things they feel so wrapped up in that nothing else matters should experience lower pain – but no, although this was hypothesised, pain intensity scores during flow trended lower – but didn’t actually reach significance. When we add the findings that concentration, self-esteem, motivation, and potency mean scores were highest in the flow state and mean scores were lowest in the apathy and anxiety states, we can begin to wonder whether engaging in absorbing activities has a major effect on pain intensity – or whether the value placed on doing the activities is actually the most important feature for people with pain. Interestingly, people felt their flow experiences while outside the home: this happened rather less often than being in the home, where apathy was most present. So… doing something absorbing is more likely to occur away from home, while remaining at home is associated with more apathy and perhaps boredom. Finally, flow occurred in work settings more than elsewhere, suggesting yet again that work is a really important feature in the lives of all people, including people living with pain. Of course that depends on the kind of work people are doing…and the authors of this paper indicate that people with persistent pain in this study have few places in which they can do highly engaging activities, even including work.

What does this mean for exercise prescription?

Engaging people in something that holds little meaning, has little challenge and may not be in the slightest bit enjoyable is probably the best way to lose friends and have clients who are “noncompliant”. I think this study suggests that activities that provide challenge, stimulation, movement possibilities, the opportunity to demonstrate and develop skill – and that people find intrinsically lead to flow – might be another way to embrace the “movement is medicine” mantra. I wonder what would happen if we abolished “exercises” and thought about “movement opportunities”, and especially movement opportunities in which people living with pain might experience flow? I, for one, would love to see occupational therapists begin to examine flow experiences for people living with pain and embraced the creativity these experiences offer for the profession.

 

 

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Collins.

Lima, L. V., Abner, T. S., & Sluka, K. A. (2017). Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. The Journal of physiology, 595(13), 4141-4150.

Park, R. (1994). A Decade of the Body: Researching and Writing About The History of Health, Fitness, Exercise and Sport, 1983-1993. Journal of Sport History, 21(1), 59-82. Retrieved from http://www.jstor.org/stable/43610596

Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports, 25(S3), 1-72.

Robinson, K., Kennedy, N., & Harmon, D. (2012). The flow experiences of people with chronic pain. OTJR: Occupation, Participation and Health, 32(3), 104-112.

Sallis, R. E. (2009). Exercise is medicine and physicians need to prescribe it!. British journal of sports medicine, 43(1), 3-4.

Sperling, L. S., Sandesara, P. B., Kim, J. H., & White, P. D. (2017). Exercise Is Medicine. JACC: Cardiovascular Imaging, 10(12).

One-session instruction in pacing doesn’t work


If there’s one form of coping strategy that occupational therapists love, it has to be the idea of “pacing”. Of course, the concept of pacing is vexed: we don’t have a good definition that’s widely accepted so it’s difficult to know whether we’re doin’ it right, but the idea of chunking down the amount of activity carried out at any one time is widely used as one way for people to sustain activity involvement despite pain and fatigue.

Today I’m looking at an old paper (from 2016) where people with osteoarthritis (hip or knee) were given instruction in time-based activity pacing by an occupational therapist. Surprisingly, this was a three-arm randomised controlled study, where 193 people were randomised into tailored activity pacing, general activity pacing, or usual care. I say surprisingly because RCT’s are fairly rare in occupational therapy research in persistent pain, and nigh on impossible to get funding for (sigh).

The definition of pacing used in this study was “the regulation of activity level and/or rate in the service of an adaptive goal or goals” (Nielson, Jensen, Karsdorp & Vlaeyen, 2013) although the form of pacing offered by clinicians working in this field is still unclear. In this study, the “tailored” group underwent seven days of monitoring using an accelerometer, the results were downloaded, analysed and an individualised pacing plan developed by the therapists. The plan was intended to highlight times when the person had high or low levels of activity (as compared with their own average, and averages drawn from previous studies of people with the same diagnosis), and to point out associations between these activity levels and self reported symptoms. Participants were then provided with ideas for changing their activity levels to optimise their ability to sustain activity and minimise symptom fluctuation.

In the “general” pacing group, participants were given the same sorts of instructions, but instead of using objective data from their own activities, they were asked to recall their past situations and symptoms, and broad guidelines were given instead. Both groups had three sessions with comparable educational material.

In the usual care group, participants were instructed to carry on with their usual approach to activity, and were assessed at baseline, 10 weeks and six months, using the same assessment process as those in the experimental arms.

Outcome measures were fatigue, measured by the Brief Fatigue Inventory (Mendoza, Wang, Cleeland, Morrissey, Johnson, Wendt & Huber, 1999); and the 8-item PROMIS fatigue short form. Pain severity was measured using the pain subscale drawn from the WOMAC. Additional measures included the 6-minute walk test; the WOMAC physical disability short form scale; the Arthritis Self-Efficacy Scale; the CES-D depression measure, and various demographic and disease measures (joint space narrowing, osteophyte formation etc). Finally, to determine activity pacing adherence, the pacing subscale of the Chronic Pain Coping Inventory was used (Jensen, Turner, Romano & Strom, 1995).

What did they find?

Well, you may have guessed from the title of this post: although people given the pacing intervention said they benefited, and they changed the way they carried out daily activities, the results showed that although they did so, the only significant change on measures taken was for WOMAC pain, in which the people in the general pacing group reduced their pain over the first 10 weeks. BUT participants in the usual care group reduced their pain over six months!

What does this mean?

Should we all throw out the idea of paced activities? Should occupational therapists despair and go back to the drawing board?

I don’t think so, and here’s why.

I think targeting pain intensity is possibly the wrong outcome in a study like this. We already have a vast collection of studies showing that pain intensity and disability are not well-correlated. Pain intensity alone isn’t the main reason people stop doing things when they have osteoarthritis – it’s often fear that the pain signifies “bone on bone” and “wear and tear” and “cartilage disintegration” (Hendry, Williams, Markland, Wilkinson & Maddison, 2006). And we also know that people with osteoarthritis develop their own self-management strategies and that these focus on maintaining everyday social roles and valued activities (Morden, Jinks, Bie Nio, 2011). Values seem to help people engage in demanding activities, whether the demands are because the activities hurt, or they’re physically demanding, or they’re not our favourite thing to do (think vacuum cleaning when Mum is coming to visit!) (McCracken & Keogh, 2009).

Perhaps, by drawing attention to both activities and pain intensity, the therapists in this study created a situation where pain intensity became more salient to the participants. Perhaps, too, aiming to reduce pain doesn’t take into account the other values people may hold. For example, even if I’m sore I’ll rush around cleaning if I know my parents (or other visitors) are coming to visit. My pain intensity matters less than feeling embarrassed at an untidy house.

I think we need to revisit the aims of pacing activity. To me there are several reasons for having the strategy available when/if needed:

  1. If I want to work consistently at something that’s going to take a week or two to do. Example: I recently laid bricks under my cherry tree. I did this over three weekends because digging into really hard soil, heaving bags of sand, and placing the bricks is something that increases my pain quite a lot. Because I have other things to achieve over the weekend and during the week, and laying the bricks wasn’t a top priority, I chose to do about a metre square each day of each weekend.
  2. If I’m aiming to do something quite demanding – like go on a two-day tramp (hike). I’ll try to build my activity tolerance over similar terrain with similar loads in advance of the actual trip.
  3. If I really loathe the job and would otherwise avoid it… For example, vacuuming and mopping my floors. I’ll do a room at a time because I seriously do not enjoy housework!

Looking at activity management in isolation from what a person believes is important makes this strategy pretty unpalatable. Combine it with values, and we’re starting to see something that can be employed flexibly and when it’s workable.

 

Hendry, M., Williams, N. H., Markland, D., Wilkinson, C., & Maddison, P. (2006). Why should we exercise when our knees hurt? A qualitative study of primary care patients with osteoarthritis of the knee. Family Practice, 23(5), 558-567.

Jensen MP, Turner JA, Romano JM, Strom SE. (1995). The Chronic Pain Coping Inventory: development and preliminary validation. PAIN ;60, 203–16.

McCracken, L. M., & Keogh, E. (2009). Acceptance, mindfulness, and values-based action may counteract fear and avoidance of emotions in chronic pain: An analysis of anxiety sensitivity. The Journal of Pain, 10(4), 408-415. doi:http://dx.doi.org/10.1016/j.jpain.2008.09.015

Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK, Huber SL. (1999). The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer 85, 1186–96.

Murphy, S. L., Kratz, A. L., Kidwell, K., Lyden, A. K., Geisser, M. E., & Williams, D. A. (2016). Brief time-based activity pacing instruction as a singular behavioral intervention was not effective in participants with symptomatic osteoarthritis. Pain, 157(7), 1563-1573.

Morden, A., Jinks, C., & Bie Nio, O. (2011). Lay models of self-management: How do people manage knee osteoarthritis in context? Chronic Illness, 7(3), 185-200.

Nielson WR, Jensen MP, Karsdorp PA, Vlaeyen JW. (2013). Activity pacing in chronic pain: concepts, evidence, and future directions. Clinical Journal of Pain, 29, 461–8.

Persson, D., Andersson, I., & Eklund, M. (2011). Defying aches and revaluating daily doing: Occupational perspectives on adjusting to chronic pain. Scandinavian Journal of Occupational Therapy, 18(3), 188-197. doi:http://dx.doi.org/10.3109/11038128.2010.509810

One way of using a biopsychosocial framework in pain management – vi


I could write about a BPS (biopsychosocial) model in every single post, but it’s time for me to explore other things happening in the pain management world, so this is my last post in this series for a while. But it’s a doozy! And thanks to Eric Bowman for sharing an incredibly relevant paper just in time for this post…

One of the problems in pain management is that there are so many assessments carried out by the professionals seeing a person – but very little discussed about pulling this information together to create an overall picture of the person we’re seeing. And it’s this aspect I want to look at today.

My view is that a BPS approach provides us with an orientation towards the multiple factors involved in why this person is presenting in this way at this time (and what is maintaining their presentation), and by integrating the factors involved, we’re able to establish a way to reduce both distress and disability. A BPS approach is like a large-scale framework, and then, based on scientific studies that postulate mechanisms thought to be involved, a clinician or team can generate some useful hypotheses through abductive reasoning, begin testing these – and then arrive at a plausible set of explanations for the person’s situation. By doing so, multiple different options for treatment can be integrated so the person can begin to find their way out of the complex mess that pain and disability can bring.

The “mechanisms” involved range from the biological (yes, all that cellular, genetic, biomechanical, muscle/nerve/brain research that some people think is omitted from a BPS approach IS included!), to the psychological (all the attention, emotion, behavioural, cognitive material that has possibly become the hallmark of a BPS approach), and eventually, to the social (interactions with family, friends, community, healthcare, people in the workplace, the way legislation is written, insurers, cultural factors and so on). That’s one mess of stuff to evaluate!

We do have a framework already for a BPS approach: the ICF (or International Classification of Functioning, Disability and Health) provides one way of viewing what’s going on, although I can empathise with those who argue that it doesn’t provide a way to integrate these domains. I think that’s OK because, in pain and disability at least, we have research into each one of these domains although the social is still the most under-developed.

Tousignant-Laflamme, Martel, Joshi & Cook (2017) provide an approach to help structure the initial domains to explore – and a way to direct where attention needs to be paid to address both pain and disability.

What I like about this model (and I urge you to read the whole paper, please!) is that it triages the level of complexity and therefore the intervention needed without dividing the problem into “physical” and “psychosocial”. This is important because any contributing factor could be The One to most strongly influence outcome – and often an integrated approach is needed, rather than thinking “oh but the biological needs to be addressed separately”.

Another feature I like about this model is the attention paid to both pain and disability.

Beginning from the centre, each of the items in the area “A” is something that is either pretty common, and/or easily modified. So, for example, someone with low back pain that’s eased by flexion, maybe has some osteoarthritis, is feeling a bit demoralised and worries the pain is going to continue, has a job that’s not readily modified (and they’re not keen on returning) might need a physiotherapist to help work through movement patterns, some good information about pain to allay their worries, an occupational therapist to help with returning to work and sleeping, and maybe some medication if it helps.

If that same person has progressed to become quite slow to move and deconditioned, they’re experiencing allodynia and hyperalgesia, they have a history of migraine and irritable bowel, their sleep is pretty rotten, and they’re avoiding movements that “might” hurt – and their employer is pretty unhappy about them returning to work – then they may need a much more assertive approach, perhaps an intensive pain management programme, a review by a psychiatrist or psychologist, and probably some occupational therapy intervention at work plus a graded exposure to activities so they gain confidence despite pain persisting. Maybe they need medications to quieten the nervous system, perhaps some help with family relationships, and definitely the whole team must be on board with the same model of healthcare.

Some aspects are, I think, missing from this model. I’d like to see more attention paid to family and friends, social and leisure activities, and the person’s own values – because we know that values can be used to help a person be more willing to engage in things that are challenging. And I think the model is entirely deficits-based meaning the strengths a person brings to his or her situation aren’t incorporated.  Of course, too, this model hasn’t been tested in practice – and there are lots of gaps in terms of the measures that can be used to assess each of these domains. But as a heuristic or a template, this model seems to be practical, relatively simple to understand – and might stop us continuing to sub-type back pain on the basis of either psychosocial risk factors or not.

Clinicians pondering this model might now be wondering how to assess each of these domains – the paper provides some useful ideas, and if the framework gains traction, I think many others will add their tuppence-worth to it. I’m curious now to see how people who experience low back pain might view an assessment and management plan based on this: would it be acceptable? Does it help explain some of the difficulties people face? Would it be useful to people living with pain so they can explore the factors that are getting in the way of recovery?

Tousignant-Laflamme, Y., Martel, M. O., Joshi, A. B., & Cook, C. E. (2017). Rehabilitation management of low back pain – it’s time to pull it all together! Journal of Pain Research, 10, 2373-2385. doi:10.2147/JPR.S146485